Inflammation and oxidative stress are common in many chronic diseases. Targeting signaling pathways that contribute to these conditions may have therapeutic potential. The transcription factor Nrf2 is a major regulator of phase II detoxification and anti-oxidant genes as well as anti-inflammatory and neuroprotective genes.
View Article and Find Full Text PDFNrf2, which is a member of the cap'n'collar family of transcription factors, is a major regulator of phase II detoxification and anti-oxidant genes as well as anti-inflammatory and neuroprotective genes. The importance of inflammation and oxidative stress in many chronic diseases supports the concept that activation of anti-oxidant Nrf2 signaling may have therapeutic potential. A number of Nrf2 activators have entered into clinical trials.
View Article and Find Full Text PDFHaemodialysis (HD) patients have many biochemical, immune and inflammatory alterations that can lead to an increased risk for cardiovascular disease. The two major factors affecting these disorders are (a) metabolic, biochemical, immune or inflammatory alterations due to the uremic syndrome per se and (b) alterations due to the therapeutic treatments of uremia, especially HD-induced stress. HD-induced stress includes activation of the pro-inflammatory transcription factor NF-kappaB.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects.
View Article and Find Full Text PDFBackground: The activator protein-1 (AP-1) family of transcription factors contributes to regulation of numerous genes involved in proliferation, apoptosis, and tumorigenesis. A wide array of stimuli can activate AP-1, including pro-inflammatory cytokines, growth factors, tumor promoters and stress. Numerous plant polyphenols have been shown to inhibit the activation of AP-1, which often is ascribed to the anti-oxidant properties of these natural products.
View Article and Find Full Text PDFUnderstanding the relationship between chemical structure and function is a ubiquitous problem within the fields of chemistry and biology. Simulation approaches attack the problem utilizing physics to understand a given process at the particle level. Unfortunately, these approaches are often too expensive for many problems of interest.
View Article and Find Full Text PDFPancreatic cholesterol esterase (CEase), which is secreted from the exocrine pancreas, is a serine hydrolase that aids in the bile salt-dependent hydrolysis of dietary cholesteryl esters and contributes to the hydrolysis of triglycerides and phospholipids. Additional roles for CEase in intestinal micelle formation and in transport of free cholesterol to the enterocyte have been suggested. There also are studies that point to a pathological role(s) for CEase in the circulation where CEase accumulates in atherosclerotic lesions and triggers proliferation of smooth muscle cells.
View Article and Find Full Text PDFThe transcription factor nuclear factor kappaB (NF-kappaB), which regulates expression of numerous antiinflammatory genes as well as genes that promote development of the prosurvival, antiapoptotic state is up-regulated in many cancer cells. The natural product resveratrol, a polyphenolic trans-stilbene, has numerous biological activities and is a known inhibitor of activation of NF-kappaB, which may account for some of its biological activities. Resveratrol exhibits activity against a wide variety of cancer cells and has demonstrated activity as a cancer chemopreventive against all stages, i.
View Article and Find Full Text PDFThe activator protein-1 (AP-1) family of transcription factors, including the most common member c-Jun-c-Fos, participates in regulation of expression of numerous genes involved in proliferation, apoptosis, and tumorigenesis in response to a wide array of stimuli including pro-inflammatory cytokines, growth factors, stress, and tumor promoters. A number of plant polyphenols including curcumin, a yellow compound in the spice turmeric, have been shown to inhibit the activation of AP-1. Curcumin is a polyphenolic dienone that is potentially reactive as a Michael acceptor and also is a strong anti-oxidant.
View Article and Find Full Text PDFBackground: Urokinase-type plasminogen activator (uPA) plays a major role in extracellular proteolytic events associated with tumor cell growth, migration and angiogenesis. Consequently, uPA is an attractive target for the development of small molecule active site inhibitors. Most of the recent drug development programs aimed at nonpeptidic inhibitors targeted at uPA have focused on arginino mimetics containing amidine or guanidine functional groups attached to aromatic or heterocyclic scaffolds.
View Article and Find Full Text PDFThe transcription factor NFkappaB (NFkappaB) is up-regulated in many cancer cells where it contributes to development of the pro-survival, anti-apoptotic state. The natural product curcumin is a known inhibitor of activation of NFkappaB. Enone analogues of curcumin were compared with curcumin for their abilities to inhibit the TNFalpha-induced activation of NFkappaB, using the Panomics' NFkappaB Reporter Stable Cell Line.
View Article and Find Full Text PDFThe natural product curcumin (diferuloylmethane, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), obtained from the spice turmeric, exhibits numerous biological activities including anti-cancer, anti-inflammatory, and anti-angiogenesis activities. Some of these biological activities may derive from its anti-oxidant properties. There are conflicting reports concerning the structural/electronic basis of the anti-oxidant activity of curcumin.
View Article and Find Full Text PDFAberrant retinal expression of vascular endothelial growth factor (VEGF) leading to neovascularization is a central feature of age-related macular degeneration and diabetic retinopathy, two leading causes of vision loss. Oxidative stress is suggested to occur in retinal tissue during age-related macular degeneration and diabetic retinopathy and is suspected in the mechanism of VEGF expression in these diseases. Arsenite, a thiol-reactive oxidative stressor, induces VEGF expression by a HIF-1alpha-independent mechanism.
View Article and Find Full Text PDFParasite lactate dehydrogenase (pLDH) is a potential drug target for new antimalarials owing to parasite dependence on glycolysis for ATP production. The pLDH from all four species of human malarial parasites were cloned, expressed, and analyzed for structural and kinetic properties that might be exploited for drug development. pLDH from Plasmodium vivax, malariae, and ovale exhibit 90-92% identity to pLDH from Plasmodium falciparum.
View Article and Find Full Text PDFBackground: Pancreatic cholesterol esterase has three proposed functions in the intestine: 1) to control the bioavailability of cholesterol from dietary cholesterol esters; 2) to contribute to incorporation of cholesterol into mixed micelles; and 3) to aid in transport of free cholesterol to the enterocyte. Inhibitors of cholesterol esterase are anticipated to limit the absorption of dietary cholesterol.
Results: The selective and potent cholesterol esterase inhibitor 6-chloro-3-(1-ethyl-2-cyclohexyl)-2-pyrone (figure 1, structure 1) was administered to hamsters fed a high cholesterol diet supplemented with radiolabeled cholesterol ester.
17-beta-Hydroxysteroid dehydrogenase type 1 (17betaHSD1), also called estradiol dehydrogenase, catalyzes the NADPH-dependent reduction of the weak estrogen, estrone, into the more potent estrogen, 17-beta-estradiol. 17betaHSD1 is an attractive drug target in hormone-sensitive breast cancer. Past efforts to develop selective inhibitors of 17betaHSD1 have focused on design of substrate analogs.
View Article and Find Full Text PDFThe 2-oxoaldehyde methylglyoxal (MeG) is the precursor to a number of the known advanced glycation endproducts (AGE) implicated in the development of diabetic complications. Other 2-oxoaldehydes that are important in AGE formation, such as glyoxal, glucosone, deoxyglucosone, xylosone and deoxyxylosone, are produced by nonenzymatic reactions. By contrast, MeG is produced by both enzymatic and nonenzymatic processes, most of which appear to be enhanced in diabetes.
View Article and Find Full Text PDFPreviously, it was demonstrated that pancreatic cholesterol esterase is selectively inhibited by 6-chloro-2-pyrones with cyclic aliphatic substituents in the 3-position. Inhibition is reversible and is competitive with substrate. Pancreatic cholesterol esterase is a potential target for treatment of hypercholesterolemia.
View Article and Find Full Text PDFToxoplasma gondii differentially expresses two forms of lactate dehydrogenase in tachyzoites and bradyzoites, respectively, designated LDH1 and LDH2. Previously it was demonstrated that LDH1 and LDH2 share a unique structural feature with LDH from the malarial parasite Plasmodium falciparum (pLDH), namely, the addition of a five-amino acid insert into the substrate specificity loops. pLDH exhibits a number of kinetic properties that previously were thought to be unique to pLDH.
View Article and Find Full Text PDFBackground: Numerous animal and population studies of diabetes have identified markers of oxidative stress. However, for most markers that have been measured the results are not consistent. In addition, it is less clear whether oxidative stress is related to the development of diabetic complications.
View Article and Find Full Text PDFBiochem Pharmacol
July 2001
Human lactate dehydrogenases (LDH-A4, -B4, and -C4) are highly homologous with 84-89% sequence similarities and 69-75% amino acid identities. Active site residues are especially conserved. Gossypol, a natural product from cotton seed, is a non-selective competitive inhibitor of NADH binding to LDH, with K(i) values of 1.
View Article and Find Full Text PDFNumerous physiological aldehydes besides glucose are substrates of aldose reductase, the first enzyme of the polyol pathway which has been implicated in the etiology of diabetic complications. The 2-oxoaldehyde methylglyoxal is a preferred substrate of aldose reductase but is also the main physiological substrate of the glutathione-dependent glyoxalase system. Aldose reductase catalyzes the reduction of methylglyoxal efficiently (k(cat)=142 min(-1) and k(cat)/K(m)=1.
View Article and Find Full Text PDFA series of 3-alkyl-6-chloro-2-pyrones with cyclohexane rings tethered to the 3-position was synthesized. The tether ranged from 0 to 4 methylene units. Inhibition of pancreatic cholesterol esterase by this series of pyrones was markedly dependent upon the length of the tether.
View Article and Find Full Text PDF