Publications by authors named "Hunot S"

Article Synopsis
  • * Parkinson's disease (PD) patients treated with l-DOPA show some protection against nAMD, but the exact mechanism was unclear until now.
  • * Research indicates that l-DOPA enhances dopamine receptor D2 (DRD2) signaling, which may inhibit the harmful growth of blood vessels in the eye, suggesting that DRD2 agonists could be potential complementary treatments for nAMD.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications.

View Article and Find Full Text PDF

Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson's disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode as an in vivo model organism.

View Article and Find Full Text PDF

To model α-Synuclein (αS) aggregation and neurodegeneration in Parkinson's disease (PD), we established cultures of mouse midbrain dopamine (DA) neurons and chronically exposed them to fibrils 91 (F91) generated from recombinant human αS. We found that F91 have an exquisite propensity to seed the aggregation of endogenous αS in DA neurons when compared to other neurons in midbrain cultures. Until two weeks post-exposure, somal aggregation in DA neurons increased with F91 concentrations (0.

View Article and Find Full Text PDF

The precise contribution of astrocytes in neuroinflammatory process occurring in Parkinson's disease (PD) is not well characterized. In this study, using GR mice that are conditionally inactivated for glucocorticoid receptor (GR) in astrocytes, we have examined the actions of astrocytic GR during dopamine neuron (DN) degeneration triggered by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results show significantly augmented DN loss in GR mutant mice in substantia nigra (SN) compared to controls.

View Article and Find Full Text PDF

It has long been proven that neurogenesis continues in the adult brains of mammals in the dentatus gyrus of the hippocampus due to the presence of neural stem cells. Although a large number of studies have been carried out to highlight the localization of vitamin D receptor in hippocampus, the expression of vitamin D receptor in neurogenic dentatus gyrus of hippocampus in Parkinson's disease (PD) and the molecular mechanisms triggered by vitamin D underlying the production of differentiated neurons from embryonic cells remain unknown. Thus, we performed a preclinical study by inducing PD in mice with MPTP and showed a reduction of glial fibrillary acidic protein ( in the dentatus gyrus of hippocampus.

View Article and Find Full Text PDF

Neutral sphingomyelinase is known to be implicated in growth arrest, differentiation, proliferation, and apoptosis. Although previous studies have reported the involvement of neutral sphingomyelinase in hippocampus physiopathology, its behavior in the hippocampus during Parkinson's disease remains undetected. In this study, we show an upregulation of inducible nitric oxide synthase and a downregulation of neutral sphingomyelinase in the hippocampus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced mouse model of Parkinson's disease.

View Article and Find Full Text PDF

Background: Evidence from mice suggests that brain infiltrating immune cells contribute to neurodegeneration, and we previously identified a deleterious lymphocyte infiltration in Parkinson's disease mice. However, this remains controversial for monocytes, due to artifact-prone techniques used to distinguish them from microglia. Our aim was to reassess this open question, by taking advantage of the recent recognition that chemokine receptors CCR2 and CX3CR1 can differentiate between inflammatory monocytes and microglia, enabling to test whether CCR2 monocytes infiltrate the brain during dopaminergic (DA) neurodegeneration and whether they contribute to neuronal death.

View Article and Find Full Text PDF

The human pathogen must evade host cell death signaling to enable replication in lung macrophages and to cause disease. After bacterial growth, however, is thought to induce apoptosis during egress from macrophages. The bacterial effector protein, SidF, has been shown to control host cell survival and death by inhibiting pro-apoptotic BNIP3 and BCL-RAMBO signaling.

View Article and Find Full Text PDF

Alzheimer's disease is characterized by the combined presence of amyloid plaques and tau pathology, the latter being correlated with the progression of clinical symptoms. Neuroinflammatory changes are thought to be major contributors to Alzheimer's disease pathophysiology, even if their precise role still remains largely debated. Notably, to what extent immune responses contribute to cognitive impairments promoted by tau pathology remains poorly understood.

View Article and Find Full Text PDF

Parkinson disease (PD) is a multifactorial neurodegenerative disorder, the etiology of which remains largely unknown. Progressive impairment of voluntary motor control, which represents the primary clinical feature of the disease, is caused by a loss of midbrain substantia nigra dopamine (DA) neurons. We present here a synthetic overview of cell-autonomous mechanisms that are likely to participate in DA cell death in both sporadic and inherited forms of the disease.

View Article and Find Full Text PDF

Today a large number of studies are focused on clarifying the complexity and diversity of the pathogenetic mechanisms inducing Parkinson disease. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that induces Parkinson disease, to evaluate the change of midbrain structure and the behavior of the anti-inflammatory factor e-cadherin, interleukin-6, tyrosine hydroxylase, phosphatase and tensin homolog, and caveolin-1. The results showed a strong expression of e-cadherin, variation of length and thickness of the heavy neurofilaments, increase of interleukin-6, and reduction of tyrosine hydroxylase known to be expression of dopamine cell loss, reduction of phosphatase and tensin homolog described to impair responses to dopamine, and reduction of caveolin-1 known to be expression of epithelial-mesenchymal transition and fibrosis.

View Article and Find Full Text PDF

In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy.

View Article and Find Full Text PDF

Progressive neuronal cell loss in a small subset of brainstem and mesencephalic nuclei and widespread aggregation of the α-synuclein protein in the form of Lewy bodies and Lewy neurites are neuropathological hallmarks of Parkinson's disease. Most cases occur sporadically, but mutations in several genes, including SNCA, which encodes α-synuclein, are associated with disease development. The discovery and development of therapeutic strategies to block cell death in Parkinson's disease has been limited by a lack of understanding of the mechanisms driving neurodegeneration.

View Article and Find Full Text PDF

Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a common feature of many neurodegenerative disorders, notably Parkinson's disease. Consequently, agents that protect mitochondria have strong therapeutic potential. Here, we sought to divert the natural strategy used by Borna disease virus (BDV) to replicate in neurons without causing cell death.

View Article and Find Full Text PDF

Background: Increasing evidence suggests that inflammation associated with microglial cell activation in the substantia nigra (SN) of patients with Parkinson disease (PD) is not only a consequence of neuronal degeneration, but may actively sustain dopaminergic (DA) cell loss over time. We aimed to study whether the intracellular chaperone heat shock protein 60 (Hsp60) could serve as a signal of CNS injury for activation of microglial cells.

Methods: Hsp60 mRNA expression in the mesencephalon and the striatum of C57/BL6 mice treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and the Hsp60/TH mRNA ratios in the SN of PD patients and aged-matched subjects were measured.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons (DN) in the substantia nigra (SN). Several lines of evidence suggest that apoptotic cell death of DN is driven in part by non-cell autonomous mechanisms orchestrated by microglial cell-mediated inflammatory processes. Although the mechanisms and molecular network underlying this deleterious cross-talk between DN and microglial cells remain largely unknown, previous work indicates that, upon DN injury, activation of the β2 integrin subunit CD11b is required for microglia-mediated DN cell death.

View Article and Find Full Text PDF

In mammalians, toll-like receptors (TLR) signal-transduction pathways induce the expression of a variety of immune-response genes, including inflammatory cytokines. It is therefore plausible to assume that TLRs are mediators in glial cells triggering the release of cytokines that ultimately kill DA neurons in the substantia nigra in Parkinson disease (PD). Accordingly, recent data indicate that TLR4 is up-regulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in a mouse model of PD.

View Article and Find Full Text PDF

Background: The systemic rotenone model of Parkinson's disease (PD) accurately replicates many aspects of the pathology of human PD, especially neurodegeneration of the substantia nigra and lesions in the enteric nervous system (ENS). Nevertheless, the precise effects of oral rotenone on the ENS have not been addressed yet. This study was therefore designed to assess the effects of a chronic oral treatment by rotenone on enteric neurochemical phenotype, gastrointestinal (GI) motility, and intestinal epithelial barrier permeability.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by a loss of dopaminergic neurons (DN) in the substantia nigra (SN). Several lines of evidence suggest that apoptotic cell death of DN is driven in part by non-cell autonomous mechanisms implicating microglial cells and inflammatory processes. Yet, how apoptotic DNs get removed by professional phagocytes and how this process modulates inflammatory processes are still unresolved issues.

View Article and Find Full Text PDF

Reactive astrogliosis is beneficial in many aspects; however, it is also detrimental in some pathological states such as the development of lethal brain tumors. It is therefore crucial to understand the mechanisms regulating astrocyte proliferation. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor family, was shown to stimulate astrocyte proliferation in vitro.

View Article and Find Full Text PDF