Microtubules (MTs) play critical roles in neuronal development, but many questions remain about the molecular mechanisms of their regulation and function. Furthermore, despite progress in understanding postsynaptic MTs, much less is known about the contributions of presynaptic MTs to neuronal morphogenesis. In particular, studies of in vivo MT dynamics in Drosophila sensory dendrites yielded significant insights into polymer-level behavior.
View Article and Find Full Text PDFCellular form and function - and thus normal development and physiology - are specified via proteins that control the organization and dynamic properties of the actin cytoskeleton. Using the Drosophila model, we have recently identified an unusual actin regulatory enzyme, Mical, which is directly activated by F-actin to selectively post-translationally oxidize and destabilize filaments - regulating numerous cellular behaviors. Mical proteins are also present in mammals, but their actin regulatory properties, including comparisons among different family members, remain poorly defined.
View Article and Find Full Text PDFActin filament assembly and disassembly are vital for cell functions. MICAL Redox enzymes are important post-translational effectors of actin that stereo-specifically oxidize actin's M44 and M47 residues to induce cellular F-actin disassembly. Here we show that Mical-oxidized (Mox) actin can undergo extremely fast (84 subunits/s) disassembly, which depends on F-actin's nucleotide-bound state.
View Article and Find Full Text PDFNumerous cellular functions depend on actin filament (F-actin) disassembly. The best-characterized disassembly proteins, the ADF (actin-depolymerizing factor)/cofilins (encoded by the twinstar gene in Drosophila), sever filaments and recycle monomers to promote actin assembly. Cofilin is also a relatively weak actin disassembler, posing questions about mechanisms of cellular F-actin destabilization.
View Article and Find Full Text PDFActin's polymerization properties are markedly altered by oxidation of its conserved Met 44 residue. Mediating this effect is a specific oxidation-reduction (redox) enzyme, Mical, that works with Semaphorin repulsive guidance cues and selectively oxidizes Met 44. We now find that this actin-regulatory process is reversible.
View Article and Find Full Text PDF