Developing efficient bifunctional electrocatalysts in neutral media to avoid the deterioration of electrodes or catalysts under harsh environments has become the ultimate goal in electrochemical water splitting. This work demonstrates the fabrication of an on-chip bifunctional two-dimensional (2D) monolayer (ML) WSe/graphene heterojunction microreactor for efficient overall water splitting in a neutral medium (pH = 7). Through the synergistic atomic growth of the metallic Cr dopant and graphene stitching contact on the 2D ML WSe, the bifunctional WSe/graphene heterojunction microreactor consisting of a full-cell configuration demonstrates excellent performance for overall water splitting in a neutral medium.
View Article and Find Full Text PDFThe adsorption and desorption of electrolyte ions strongly modulates the carrier density or carrier type on the surface of monolayer-MoS catalyst during the hydrogen evolution reaction (HER). The buildup of electrolyte ions onto the surface of monolayer MoS during the HER may also result in the formation of excitons and trions, similar to those observed in gate-controlled field-effect transistor devices. Using the distinct carrier relaxation dynamics of excitons and trions of monolayer MoS as sensitive descriptors, an in situ microcell-based scanning time-resolved liquid cell microscope is set up to simultaneously measure the bias-dependent exciton/trion dynamics and spatially map the catalytic activity of monolayer MoS during the HER.
View Article and Find Full Text PDFThe global ammonia yield is critical to the fertilizer industry as the global food demand is highly dependent on it, whereas, NH is also a key chemical for pharmaceutical, textile, plastic, explosive, and dye-making industries. At present, the demand for NH is fulfilled by the Haber-Bosch method, which consumes 1-3% of global energy and causes 0.5-1% CO emission every year.
View Article and Find Full Text PDFThe combined functionality of components in organic-inorganic hybrid nanomaterials render them efficient nanoreactors. However, the development in this field is limited due to a lack of synthetic avenues and systematic control of the growth kinetics of hybrid structures. In this work, we take advantage of an ionic switch for regio-control of Au-BINOL(1,1'-Bi-2-naphthol) hybrid nanostructures.
View Article and Find Full Text PDFUsing a conductive atomic force microscopic setup, a metallic nano-cluster at a tip apex was successfully manufactured by an electrochemical redox process from an anodic aluminum oxide template. The diameter of the metallic nano-clusters ranged from 15 nm to 200 nm. The diameters of the nano-clusters could be well-controlled by adjusting the pore size of the templates.
View Article and Find Full Text PDF