Publications by authors named "Hung V Do"

Acid alpha-glucosidase (GAA) is a lysosomal glycogen-catabolizing enzyme, the deficiency of which leads to Pompe disease. Pompe disease can be treated with systemic recombinant human GAA (rhGAA) enzyme replacement therapy (ERT), but the current standard of care exhibits poor uptake in skeletal muscles, limiting its clinical efficacy. Furthermore, it is unclear how the specific cellular processing steps of GAA after delivery to lysosomes impact its efficacy.

View Article and Find Full Text PDF

Pompe disease is a rare inherited metabolic disorder of defective lysosomal glycogen catabolism due to a deficiency in acid alpha-glucosidase (GAA). Alglucosidase alfa enzyme replacement therapy (ERT) using recombinant human GAA (rhGAA ERT) is the only approved treatment for Pompe disease. Alglucosidase alfa has provided irrefutable clinical benefits, but has not been an optimal treatment primarily due to poor drug targeting of ERT to skeletal muscles.

View Article and Find Full Text PDF

Pompe disease is a rare inherited disorder of lysosomal glycogen metabolism due to acid α-glucosidase (GAA) deficiency. Enzyme replacement therapy (ERT) using alglucosidase alfa, a recombinant human GAA (rhGAA), is the only approved treatment for Pompe disease. Although alglucosidase alfa has provided clinical benefits, its poor targeting to key disease-relevant skeletal muscles results in suboptimal efficacy.

View Article and Find Full Text PDF

Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA.

View Article and Find Full Text PDF

Pompe disease is a lysosomal storage disorder (LSD) caused by mutations in the gene that encodes acid alpha-glucosidase (GAA). Recently, small molecule pharmacological chaperones have been shown to increase protein stability and cellular levels for mutant lysosomal enzymes and have emerged as a new therapeutic strategy for the treatment of LSDs. In this study, we characterized the pharmacological chaperone 1-deoxynojirimycin (DNJ) on 76 different mutant forms of GAA identified in Pompe disease.

View Article and Find Full Text PDF