Publications by authors named "Hun-Sik Kim"

Mesenchymal stem cells (MSCs) have garnered attention for their regenerative and immunomodulatory capabilities in clinical trials for various diseases. However, the effectiveness of MSC-based therapies, especially for conditions like graft-versus-host disease (GvHD), remains uncertain. The cytokine interferon (IFN)-γ has been known to enhance the immunosuppressive properties of MSCs through cell-to-cell interactions and soluble factors.

View Article and Find Full Text PDF
Article Synopsis
  • Distant metastasis is a major cause of cancer death, and immune surveillance, particularly through natural killer (NK) cells, plays a crucial role in keeping it under control.
  • The study finds that the MAP4K1 gene, which encodes the protein HPK1, is overexpressed in dysfunctional NK cells, contributing to increased metastasis in melanoma while not affecting the growth of primary tumors.
  • HPK1 acts as an intracellular checkpoint that limits NK cell effectiveness, and its dysregulation, often linked to factors like TGF-β1, allows tumors to evade immune responses during metastasis and affects patient responses to immune therapy.
View Article and Find Full Text PDF

Background: Psoriasis is an inflammatory skin disease characterized by the hyperproliferative epidermal keratinocytes and significant immune cells infiltration, leading to cytokines production such as IL-1β, TNF-α, IL-23, and IL-17. Recent study highlights the critical role of IL-1β in the induction and activation of pathogenic Th17 and IL-17-producing γδ T cells, contributing to psoriasis. However, the mechanism underlying IL-1β dysregulation in psoriasis pathogenesis is unclear.

View Article and Find Full Text PDF

Natural killer (NK) cells are key effectors in cancer immunosurveillance, eliminating a broad spectrum of cancer cells without major histocompatibility complex (MHC) specificity and graft-versus-host diseases (GvHD) risk. The use of allogeneic NK cell therapies from healthy donors has demonstrated favorable clinical efficacies in treating diverse cancers, particularly hematologic malignancies, but it requires cytokines such as IL-2 to primarily support NK cell persistence and expansion. However, the role of IL-2 in the regulation of activating receptors and the function of NK cells expanded for clinical trials is poorly understood and needs clarification for the full engagement of NK cells in cancer immunotherapy.

View Article and Find Full Text PDF

Vasomotion is the oscillation of vascular tone which gives rise to flow motion of blood into an organ. As is well known, spontaneous contractile organs such as heart, GI, and genitourinary tract produce rhythmic contraction. It imposes or removes pressure on their vessels alternatively for exchange of many substances.

View Article and Find Full Text PDF

Clinical effect of donor-derived natural killer cell infusion (DNKI) after HLA-haploidentical hematopoietic cell transplantation (HCT) was evaluated in high-risk myeloid malignancy in phase 2, randomized trial. Seventy-six evaluable patients (aged 21-70 years) were randomized to receive DNKI (N = 40) or not (N = 36) after haploidentical HCT. For the HCT conditioning, busulfan, fludarabine, and anti-thymocyte globulin were administered.

View Article and Find Full Text PDF

Background: Eosinophilic inflammation is a hallmark of refractory chronic rhinosinusitis (CRS) and considered a major therapeutic target. Autophagy deficiency in myeloid cells plays a causal role in eosinophilic CRS (ECRS) via macrophage IL-1β overproduction, thereby suggesting autophagy regulation as a potential therapeutic modality. Trehalose is a disaccharide sugar with known pro-autophagy activity and effective in alleviating diverse inflammatory diseases.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate cytotoxic lymphocytes that efficiently eliminate malignant and virus-infected cells without prior activation the directed and focused release of lytic granule contents for target cell lysis. This cytolytic process is tightly regulated at discrete checkpoint stages to ensure the selective killing of diseased target cells and is highly dependent on the coordinated regulation of cytoskeletal components. The actin-binding protein filamin crosslinks cortical actin filaments into orthogonal networks and links actin filament webs to cellular membranes to modulate cell migration, adhesion, and signaling.

View Article and Find Full Text PDF

Background: Ginsenosides have beneficial effects on several airway inflammatory disorders primarily through glucocorticosteroid-like anti-inflammatory activity. Among inflammatory cells, eosinophils play a major pathogenic role in conferring a risk of severe refractory diseases including chronic rhinosinusitis (CRS). However, the role of ginsenosides in reducing eosinophilic inflammation and CRS pathogenesis is unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • Natural killer (NK) cells are important for immune response, and their activity can indicate the severity of various diseases, but current testing methods face challenges in preparation and consistency.
  • New bispecific antibodies (BsAbs) targeting specific NK cell receptors have been developed to help assess NK cell functions more easily and reliably by enhancing their activation and response.
  • These NK cell activator antibodies (NKABs) show effectiveness in detecting NK cell dysfunctions in certain diseases, demonstrating their potential for use in clinical diagnostics and prognosis.
View Article and Find Full Text PDF

Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30.

View Article and Find Full Text PDF

Natural killer (NK) cells are a subset of innate lymphoid cells playing an important role in immune surveillance and early defense against infection and cancer. They recognize and directly kill infected or transformed cells. At the same time, they produce various cytokines and chemokines to regulate other immune cells.

View Article and Find Full Text PDF

Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize anti-tumor activity while preventing tumor immune escape.

View Article and Find Full Text PDF

Distant metastasis represents the primary cause of cancer-associated death. Pulmonary metastasis is most frequently seen in many cancers, largely driven by lung inflammation. Components from primary tumor or recruited leukocytes are known to facilitate metastasis formation.

View Article and Find Full Text PDF

Natural killer (NK) cells are cytotoxic innate lymphocytes endowed with a unique ability to kill a broad spectrum of cancer and virus-infected cells. Given their key contribution to diverse diseases, the measurement of NK cell activity (NKA) has been used to estimate disease prognosis or the effect of therapeutic treatment. Currently, NKA assays are primarily based on cumbersome procedures related to careful labeling and handling of target cells and/or NK cells, and they require a rapid isolation of peripheral blood mononuclear cells (PBMCs) which often necessitates a large amount of blood.

View Article and Find Full Text PDF

The fusion gene generating an oncogenic tyrosine kinase is a hallmark of chronic myeloid leukemia (CML), which can be successfully targeted by BCR-ABL1 tyrosine kinase inhibitors (TKIs). However, treatment-free remission has been achieved in a minority of patients due to evolving TKI resistance and intolerance. Primary or acquired resistance to the approved TKIs and progression to blast crisis (BC), thus, remain a major clinical challenge that requires alternative therapeutic strategies.

View Article and Find Full Text PDF

Gastric motility is controlled by slow waves. In general, the activation of the ATP-sensitive K (K) channels in the smooth muscle opposes the membrane excitability and produces relaxation. Since metabolic inhibition and/or diabetes mellitus are accompanied by dysfunctions of gastric smooth muscle, we examined the possible roles of K channels in human gastric motility.

View Article and Find Full Text PDF

Natural killer (NK) cells are key effectors in cancer immunosurveillance and can be used as a prognostic biomarker in diverse cancers. Nonetheless, the role of NK cells in pancreatic cancer (PC) remains elusive, given conflicting data on their association with disease prognosis. In this study, using conventional K562 target cells and complementary engineered target cells providing defined and synergistic stimulation for NK cell activation, a correlation between impaired NK cell cytotoxic degranulation and PC progression was determined.

View Article and Find Full Text PDF

Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of , promote wound healing, the proliferation and migration activities of 15 different ginsenosides were tested by MTT assay and scratched wound closure assay. Among ginsenosides, gypenoside LXXV (G75) showed the most potent wound healing effects.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphoid cells that provide early protection against cancer development via their selectivity to kill abnormal cells undergoing cellular transformation without the need for prior stimulation. Given the correlation between NK cell dysfunction and cancer prognosis, restoration of endogenous NK cells in the tumor microenvironment or adoptive transfer of NK cells with improved function holds great promise in cancer treatment. Furthermore, MHC-unrestricted tumor lysis by NK cells complements the MHC-restricted killing of tumor cells by cytotoxic T cells, thus positioning NK cells as an alternative or complementary therapeutic target for cancers that are refractory to T cell-based therapy.

View Article and Find Full Text PDF

Autophagy is a homeostatic mechanism that discards not only invading pathogens but also damaged organelles and denatured proteins via lysosomal degradation. Increasing evidence suggests a role for autophagy in inflammatory diseases, including infectious diseases, Crohn's disease, cystic fibrosis, and pulmonary hypertension. These studies suggest that modulating autophagy could be a novel therapeutic option for inflammatory diseases.

View Article and Find Full Text PDF

Expression of ectonucleotidase CD39 contributes to the suppressive activity of Foxp3 regulatory T cells (Tregs) by hydrolyzing immunogenic ATP into AMP. The molecular mechanism that drives CD39 expression on Tregs remains elusive. We found that tumor-infiltrating Tregs (Ti-Tregs) failed to up-regulate CD39 in mice lacking EBI3 subunit of IL-27 or IL-27Ra.

View Article and Find Full Text PDF

This study identified 8-azaguanine (8-AG) as a novel immunomodulatory drug (IMiD) through a high-throughput screen of the Preswick Chemical Library in a model of human NK cell cytotoxicity against blood cancer cells. 8-AG, originally developed as an antineoplastic agent, significantly increased the cytotoxicity of NK cells and was superior in this activity to previously known IMiDs, such as fluoxetine and amphotericin B, identified from the same library. IFN-γ expression was also slightly increased by 8-AG.

View Article and Find Full Text PDF

Ginsenosides are the principal active components of ginseng and are considered attractive candidates for combination cancer therapy because they can kill tumors and have favorable safety profiles. However, the overall benefit of ginsenosides remains unclear, particularly in cancer immunosurveillance, considering the controversial results showing repression or promotion of immune responses. Here we identify a potentiating role of ginsenoside F1 (G-F1) in cancer surveillance by natural killer (NK) cells.

View Article and Find Full Text PDF

Among the most promising therapeutic modalities for cancer treatment is the blockade of immune checkpoint pathways, which are frequently co-opted by tumors as a major mechanism of immune escape. CTLA-4 and PD-1 are the representative examples, and their blockade by therapeutic antibodies leads to enhanced anti-tumor immunity with durable clinical responses, but only in a minority of patients. This has highlighted the need to identify and target additional immune checkpoints that can be exploited to further enhance immune responses to refractory cancers.

View Article and Find Full Text PDF