Publications by authors named "Hun Soo Jang"

Although the Li metal has been gaining attention as a promising anode material for the next-generation high-energy-density rechargeable batteries owing to its high theoretical specific capacity (3860 mAh g), its practical use remains challenging owing to inherent issues related to Li nucleation and growth. This paper reports the fabrication of a lithiophilic multichannel layer (LML) that enables the simultaneous control of Li nucleation and growth in Li-metal batteries. The LML, composed of lithiophilic ceramic composite nanoparticles (Ag-plated AlO particles), is fabricated using the electroless plating method.

View Article and Find Full Text PDF

We demonstrate the modulation of electrical switching properties through the interconnection of multiple nanoscale channels (∼600 nm) in a single VO nanobeam with a coexisting metal-insulator (M-I) domain configuration during phase transition. The Raman scattering characteristics of the synthesized VO nanobeams provide evidence that substrate-induced interfacial strain can be inhomogeneously distributed along the length of the nanobeam. Interestingly, the nanoscale VO devices with the same channel length and width exhibit distinct differences in hysteric current-voltage characteristics, which are explained by theoretical calculations of resistance change combined with Joule heating simulations of the nanoscale VO channels.

View Article and Find Full Text PDF

A method for transforming planar electronic devices into 3D structures under mechanically mild and stable conditions is demonstrated. This strategy involves diffusion control of acetone as a plasticizer into a spatially designed acrylonitrile butadiene styrene (ABS) framework to both laminate membrane-type electronic devices and transform them into a desired 3D shape. Optical, mechanical, and electrical analysis reveals that the plasticized region serves as a damper and even reflows to release the stress of fragile elements, for example, an Au interconnect electrode in this study, below the ultimate stress point.

View Article and Find Full Text PDF

Introducing two-dimensional post arrays and a water-soluble sacrificial layer between an ultrathin substrate and a handling substrate provides controllability of the interfacial adhesion in a stable manner. The periodically anchored and suspended configuration after the chemical etching process facilitates the development of, for example, printable Alq3 -based OLEDs that can be attached to unconventional surfaces.

View Article and Find Full Text PDF

A highly flexible and transparent transistor is developed based on an exfoliated MoS2 channel and CVD-grown graphene source/drain electrodes. Introducing the 2D nanomaterials provides a high mechanical flexibility, optical transmittance (∼74%), and current on/off ratio (>10(4)) with an average field effect mobility of ∼4.7 cm(2) V(-1) s(-1), all of which cannot be achieved by other transistors consisting of a MoS2 active channel/metal electrodes or graphene channel/graphene electrodes.

View Article and Find Full Text PDF