Publications by authors named "Humphrey Yang"

Thermally cured thermoset polymers such as epoxies are widely used in industry and manufacturing due to their thermal, chemical, and electrical resistance, and mechanical strength and toughness. However, it can be challenging to 3D print thermally cured thermosets without rheological modification because they tend to flow and not hold their shape when extruded due to cure times of minutes to hours. 3D printing inside a support bath addresses this by allowing the liquid polymer to be held in place until the thermoset is fully cured and expands the structures that can be printed as extrusion is not limited to layer-by-layer.

View Article and Find Full Text PDF

Thermoset elastomers are widely used high-performance materials due to their thermal stability, chemical resistance, and mechanical properties. However, established casting and molding techniques limit the overall 3D complexity of parts that can be fabricated. Advanced manufacturing methods such as 3D printing have improved design flexibility and reduced development time but have proved challenging using thermally-cured thermosets due to their viscosity, slow gelation kinetics and high surface tension.

View Article and Find Full Text PDF

Morphing structures are often engineered with stresses introduced into a flat sheet by leveraging structural anisotropy or compositional heterogeneity. Here, we identify a simple and universal diffusion-based mechanism to enable a transient morphing effect in structures with parametric surface grooves, which can be realized with a single material and fabricated using low-cost manufacturing methods (e.g.

View Article and Find Full Text PDF