Publications by authors named "Humphrey Shi"

In blurry images, the degree of image blurs may vary drastically due to different factors, such as varying speeds of shaking cameras and moving objects, as well as defects of the camera lens. However, current end-to-end models failed to explicitly take into account such diversity of blurs. This unawareness compromises the specialization at each blur level, yielding sub-optimal deblurred images as well as redundant post-processing.

View Article and Find Full Text PDF

Salient object detection (SOD) aims to identify the most visually distinctive object(s) from each given image. Most recent progresses focus on either adding elaborative connections among different convolution blocks or introducing boundary-aware supervision to help achieve better segmentation, which is actually moving away from the essence of SOD, i.e.

View Article and Find Full Text PDF

Aggregating features in terms of different convolutional blocks or contextual embeddings has been proven to be an effective way to strengthen feature representations for semantic segmentation. However, most of the current popular network architectures tend to ignore the misalignment issues during the feature aggregation process caused by step-by-step downsampling operations and indiscriminate contextual information fusion. In this paper, we explore the principles in addressing such feature misalignment issues and inventively propose Feature-Aligned Segmentation Networks (AlignSeg).

View Article and Find Full Text PDF

Contextual information is vital in visual understanding problems, such as semantic segmentation and object detection. We propose a criss-cross network (CCNet) for obtaining full-image contextual information in a very effective and efficient way. Concretely, for each pixel, a novel criss-cross attention module harvests the contextual information of all the pixels on its criss-cross path.

View Article and Find Full Text PDF