Background: Soluble oligomeric (misfolded) species of amyloid-β (Aβ) are the main mediators of toxicity in Alzheimer's disease (AD). These oligomers subsequently form aggregates of insoluble fibrils that precipitate as extracellular and perivascular plaques in the brain. Active immunization against Aβ is a promising disease modifying strategy.
View Article and Find Full Text PDFThe 39- to 42-residue amyloid β (Aβ) peptide is deposited in extracellular fibrillar plaques in the brain of patients suffering from Alzheimer's Disease (AD). Vaccination with these peptides seems to be a promising approach to reduce the plaque load but results in a dominant antibody response directed against the N-terminus. Antibodies against the N-terminus will capture Aβ immediately after normal physiological processing of the amyloid precursor protein and therefore will also reduce the levels of non-misfolded Aβ, which might have a physiologically relevant function.
View Article and Find Full Text PDFFormaldehyde is a well known cross-linking agent that can inactivate, stabilize, or immobilize proteins. The purpose of this study was to map the chemical modifications occurring on each natural amino acid residue caused by formaldehyde. Therefore, model peptides were treated with excess formaldehyde, and the reaction products were analyzed by liquid chromatography-mass spectrometry.
View Article and Find Full Text PDFMemory CD4 T-cell responses against respiratory syncytial virus (RSV) were evaluated in peripheral blood mononuclear cells of healthy blood donors with gamma interferon enzyme-linked immunospot (Elispot) assays. RSV-specific responses were detected in every donor at levels varying between 0.05 and 0.
View Article and Find Full Text PDF