Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade.
View Article and Find Full Text PDFObesity has been associated with altered reproductive activity in mares, and may negatively affect fertility. To examine the influence of long-term high-energy (HE) feeding on fertility, Shetland pony mares were fed a diet containing 200% of net energy (NE) requirements during a three-year study. The incidence of hemorrhagic anovulatory follicles (HAF) and annual duration of cyclicity were compared to those in control mares receiving a maintenance diet.
View Article and Find Full Text PDFElement content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (g ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. g was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L.
View Article and Find Full Text PDFBackground: In the day clinic of the Department of Psychiatry and Psychotherapy of the LMU Munich, a multimodal therapy concept is offered. The goals of treatment are, in addition to the reduction of symptoms, an expansion of everyday life skills and the professional and social reintegration of patients.
Method: The effectiveness of the therapeutic work was evaluated over a period of just under 3 years.
Plant organ growth results from cell production and cell expansion. Deciphering the contribution of each of these processes to growth rate is an important issue in developmental biology. Here, we investigated the cellular processes governing root elongation rate, considering two sources of variation: genotype and disturbance by chemicals (NaCl, polyethylene glycol, H2O2, abscisic acid).
View Article and Find Full Text PDFThe adaptive capacity of long-lived organisms such as trees to the predicted climate changes, including severe and successive drought episodes, will depend on the presence of genetic diversity and phenotypic plasticity. Here, the involvement of epigenetic mechanisms in phenotypic plasticity toward soil water availability was examined in Populus×euramericana. This work aimed at characterizing (i) the transcriptome plasticity, (ii) the genome-wide plasticity of DNA methylation, and (iii) the function of genes affected by a drought-rewatering cycle in the shoot apical meristem.
View Article and Find Full Text PDFPhenotyping the dynamics of root responses to environmental cues is necessary to understand plant acclimation to their environment. Continuous monitoring of root growth is challenging because roots normally grow belowground and are very sensitive to their growth environment. This protocol combines infrared imaging with hydroponic cultivation for kinematic analyses.
View Article and Find Full Text PDFWood is a renewable resource that can be employed for the production of second generation biofuels by enzymatic saccharification and subsequent fermentation. Knowledge on how the saccharification potential is affected by genotype-related variation of wood traits and drought is scarce. Here, we used three Populus nigra L.
View Article and Find Full Text PDFMolecular regulation of growth must include spatial and temporal coupling of cell production and cell expansion. The underlying mechanisms, especially under environmental challenge, remain obscure. Spatial patterns of cell processes make the root apex well suited to deciphering stress signaling pathways, and to investigating both processes.
View Article and Find Full Text PDFStrong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young's elastic modulus of intact poplar roots (32MPa), a rapid <0.
View Article and Find Full Text PDFUnderstanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available.
View Article and Find Full Text PDFPhenotypic plasticity is considered as an important mechanism for plants to cope with environmental challenges. Leaf growth is one of the first macroscopic processes to be impacted by modification of soil water availability. In this study, we intended to analyze and compare plasticity at different scales.
View Article and Find Full Text PDFLipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting agent latrunculin B on lipid raft markers of both protein and lipid nature and show that two detergent-free membrane subtypes can be isolated and separated from each other on a one-step density gradient combined with pooling of the appropriate gradient fractions.
View Article and Find Full Text PDFAquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues.
View Article and Find Full Text PDFPreviously we have shown that the activity of the multidrug transporter ABCC1 (multidrug resistance protein 1), and its localization in lipid rafts, depends on cortical actin (Hummel I, Klappe K, Ercan C, Kok JW. Mol. Pharm.
View Article and Find Full Text PDFWe report about two patients with denial of pregnancy. While the first patient was free of psychopathological symptoms besides denial of pregnancy until rupture of the membranes, and was able to accomodate the new born, the second patient with psychotic denial of pregnancy could not accomodate the child because of the schizophrenia, so that an adoption was necessary. On the basis of the two cases aetiological, epidemiological, clinical und prognostic implications of psychotic and non-psychotic denial of pregnancy are discussed.
View Article and Find Full Text PDFMRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly complete oxidation of free cholesterol in the plasma membrane of BHK-MRP1 (MRP1-expressing baby hamster kidney) cells did not affect MRP1 localization in lipid rafts or its efflux function, using 5-carboxyfluorescein diacetate as a substrate. Inhibition of cholesterol biosynthesis, using lovastatin in combination with RO 48-8071, an inhibitor of oxidosqualene cyclase, resulted in a shift of MRP1 out of lipid raft fractions, but did not affect MRP1-mediated efflux in Neuro-2a (neuroblastoma) cells.
View Article and Find Full Text PDFBackground: Renewed interest in plant×environment interactions has risen in the post-genomic era. In this context, high-throughput phenotyping platforms have been developed to create reproducible environmental scenarios in which the phenotypic responses of multiple genotypes can be analysed in a reproducible way. These platforms benefit hugely from the development of suitable databases for storage, sharing and analysis of the large amount of data collected.
View Article and Find Full Text PDFBMC Genomics
November 2010
MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers.
View Article and Find Full Text PDFGrowth and carbon (C) fluxes are severely altered in plants exposed to soil water deficit. Correspondingly, it has been suggested that plants under water deficit suffer from C shortage. In this study, we test this hypothesis in Arabidopsis (Arabidopsis thaliana) by providing an overview of the responses of growth, C balance, metabolites, enzymes of the central metabolism, and a set of sugar-responsive genes to a sustained soil water deficit.
View Article and Find Full Text PDFWe show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids.
View Article and Find Full Text PDFBackground: Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets.
View Article and Find Full Text PDFLipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and discussed in terms of relevance to ABC transporter function.
View Article and Find Full Text PDF