Objective: Non-invasive brain stimulation (NIBS) offers therapeutic benefits for various brain disorders. Personalization may enhance these benefits by optimizing stimulation parameters for individual subjects.
Approach: We present a computational pipeline for simulating and assessing the effects of NIBS using personalized, large-scale brain network activity models.
We investigate the convergence of quasiparticle energies for periodic systems to the thermodynamic limit using increasingly large simulation cells corresponding to increasingly dense integration meshes in reciprocal space. The quasiparticle energies are computed at the level of equation-of-motion coupled-cluster theory for ionization (IP-EOM-CC) and electron attachment processes (EA-EOM-CC). By introducing an electronic correlation structure factor, the expected asymptotic convergence rates for systems with different dimensionality are formally derived.
View Article and Find Full Text PDFHomonymous Hemianopia (HH), a common visual impairment resulting from occipital lobe lesions, affects a significant number of stroke survivors. Intensive perceptual training can foster recovery, possibly by enhancing surviving visual pathways. This study employed cortico-cortical paired associative stimulation (ccPAS) to induce associative plasticity within the residual and bi-directional primary visual cortex (V1) - middle temporal area (MT) pathways in stroke patients.
View Article and Find Full Text PDFCerebellar functional and structural connectivity are likely related to motor function after stroke. Less is known about motor recovery, which is defined as a gain of function between two time points, and about the involvement of the cerebellum. Fifteen patients who were hospitalized between 2018 and 2020 for a first cerebral ischemic event with persistent upper limb deficits were assessed by resting-state functional MRI (rsfMRI) and clinical motor score measurements at 3, 9 and 15 weeks after stroke.
View Article and Find Full Text PDFHealthy aging often entails a decline in cognitive and motor functions, affecting independence and quality of life in older adults. Brain stimulation shows potential to enhance these functions, but studies show variable effects. Previous studies have tried to identify responders and non-responders through correlations between behavioral change and baseline parameters, but results lack generalization to independent cohorts.
View Article and Find Full Text PDFBecause of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging.
View Article and Find Full Text PDFAging populations face significant cognitive challenges, particularly in working memory (WM). Transcranial alternating current stimulation (tACS) offer promising avenues for cognitive enhancement, especially when inspired by brain physiology. This study (NCT04986787) explores the effect of multifocal tACS on WM performance in healthy older adults, focusing on fronto-parietal network modulation.
View Article and Find Full Text PDFThe onset of collision dynamics between an ion and a Rydberg atom is studied in a regime characterized by a multitude of collision channels. These channels arise from coupling between a nonpolar Rydberg state and numerous highly polar Stark states. The interaction potentials formed by the polar Stark states show a substantial difference in spatial gradient compared to the nonpolar state leading to a separation of collisional timescales, which is observed in situ.
View Article and Find Full Text PDFPoly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known.
View Article and Find Full Text PDFWe investigate the convergence of coupled-cluster (CC) correlation energies and related quantities with respect to the employed basis set size for the uniform electron gas (UEG) to gain a better understanding of the basis set incompleteness error (BSIE). To this end, coupled-cluster doubles (CCD) theory is applied to the three-dimensional UEG for a range of densities, basis set sizes, and electron numbers. We present a detailed analysis of individual diagrammatically decomposed contributions to the amplitudes at the level of CCD theory.
View Article and Find Full Text PDFReinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, we exploited a recently developed non-invasive deep brain stimulation technique called transcranial temporal interference stimulation (tTIS) during reinforcement motor learning with concurrent neuroimaging, in a randomized, sham-controlled, double-blind study.
View Article and Find Full Text PDFBackground: Phase synchronization over long distances underlies inter-areal communication and importantly, modulates the flow of information processing to adjust to cognitive demands.
Objective: This study investigates the impact of single-session, cross-frequency (Alpha-Gamma) bifocal transcranial alternating current stimulation (cf-tACS) to the cortical visual motion network on inter-areal coupling between the primary visual cortex (V1) and the medio-temporal area (MT) and on motion direction discrimination.
Methods: Based on the well-established phase-amplitude coupling (PAC) mechanism driving information processing in the visual system, we designed a novel directionally tuned cf-tACS protocol.
Background: Cortical excitation/inhibition dynamics have been suggested as a key mechanism occurring after stroke. Their supportive or maladaptive role in the course of recovery is still not completely understood. Here, we used transcranial magnetic stimulation (TMS)-electroencephalography coupling to study cortical reactivity and intracortical GABAergic inhibition, as well as their relationship to residual motor function and recovery longitudinally in patients with stroke.
View Article and Find Full Text PDF. Selective neuromodulation of deep brain regions has for a long time only been possible through invasive approaches, because of the steep depth-focality trade-off of conventional non-invasive brain stimulation (NIBS) techniques..
View Article and Find Full Text PDFThe literature investigating the effects of alpha oscillations on corticospinal excitability is divergent. We believe inconsistency in the findings may arise, among others, from the electroencephalography (EEG) processing for brain-state determination. Here, we provide further insights in the effects of the brain-state on cortical and corticospinal excitability and quantify the impact of different EEG processing.
View Article and Find Full Text PDFStroke as the leading cause of adult long-term disability and has a significant impact on patients, society and socio-economics. Non-invasive brain stimulation (NIBS) approaches such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tES) are considered as potential therapeutic options to enhance functional reorganization and augment the effects of neurorehabilitation. However, non-invasive electrical and magnetic stimulation paradigms are limited by their depth focality trade-off function that does not allow to target deep key brain structures critically important for recovery processes.
View Article and Find Full Text PDFThe motor learning process entails plastic changes in the brain, especially in brain network reconfigurations. In the current study, we sought to characterize motor learning by determining changes in the coupling behaviour between the brain functional and structural connectomes on a short timescale. 39 older subjects (age: mean (SD) = 69.
View Article and Find Full Text PDFBackground: The indication for mechanical thrombectomy (MT) in stroke patients with large vessel occlusion has been constantly expanded over the past years. Despite remarkable treatment effects at the group level in clinical trials, many patients remain severely disabled even after successful recanalization. A better understanding of this outcome variability will help to improve clinical decision-making on MT in the acute stage.
View Article and Find Full Text PDFThe stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models.
View Article and Find Full Text PDFQuantitative magnetic resonance imaging (qMRI) can increase the specificity and sensitivity of conventional weighted MRI to underlying pathology by comparing meaningful physical or chemical parameters, measured in physical units, with normative values acquired in a healthy population. This study focuses on multi-echo relaxometry, a qMRI technique that probes the complex tissue microstructure by differentiating compartment-specific relaxation times. However, estimation methods are still limited by their sensitivity to the underlying noise.
View Article and Find Full Text PDFObjective: Home-based non-invasive brain stimulation (NIBS) has been suggested as an adjunct treatment strategy for neuro-psychiatric disorders. There are currently no available solutions to direct and monitor correct placement of the stimulation electrodes. To address this issue, we propose an easy-to-use digital tool to support patients for self-application.
View Article and Find Full Text PDFBackground: Around 25% of patients who have had a stroke suffer from severe upper-limb impairment and lack effective rehabilitation strategies. The AVANCER proof-of-concept clinical trial (NCT04448483) tackles this issue through an intensive and personalized-dosage cumulative intervention that combines multiple non-invasive neurotechnologies.
Methods: The therapy consists of two sequential interventions, lasting until the patient shows no further motor improvement, for a minimum of 11 sessions each.
Cortico-cortical paired associative stimulation (ccPAS), which repeatedly pairs single-pulse transcranial magnetic stimulation (TMS) over two distant brain regions, is thought to modulate synaptic plasticity. We explored its spatial selectivity (pathway and direction specificity) and its nature (oscillatory signature and perceptual consequences) when applied along the ascending () and descending () motion discrimination pathway. We found unspecific connectivity increases in bottom-up inputs in the low gamma band, probably reflecting visual task exposure.
View Article and Find Full Text PDFThe analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency and the treatment of a single patient may require the characterization of thousands of MEPs. Given the difficulty of developing reliable and accurate algorithms, currently the assessment of MEPs is performed with visual inspection and manual annotation by a medical expert; making it a time-consuming, inaccurate, and error-prone process.
View Article and Find Full Text PDF