Publications by authors named "Hume E Field"

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 589 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal.

View Article and Find Full Text PDF

Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood.

View Article and Find Full Text PDF

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 630 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied flying-foxes, which are big bats that travel a lot and help plants by spreading seeds and pollen.
  • They tracked 201 flying-foxes across Australia to learn how far they travel between their resting spots, finding they can go really far but have no fixed path.
  • This means that these bats are always moving around and don’t stick to one spot, creating a complex system of locations they visit regularly.
View Article and Find Full Text PDF

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. We used a Bayesian statistical framework and sequence data from all known bat-CoVs (including 630 novel CoV sequences) to study their macroevolution, cross-species transmission, and dispersal in China.

View Article and Find Full Text PDF

In November 2017, two groups of P. conspicillatus pups from separate locations in Far North Queensland presented with neurological signs consistent with Australian bat lyssavirus (ABLV) infection. These pups (n = 11) died over an 11-day period and were submitted to a government laboratory for testing where ABLV infection was confirmed.

View Article and Find Full Text PDF

Historically, Australia was considered free of rabies and rabieslike viruses. Thus, the identification of Australian bat lyssavirus (ABLV) in 1996 in a debilitated bat found by a member of the public precipitated both public health consternation and a revision of lyssavirus taxonomy. Subsequent observational studies sought to elaborate the occurrence and frequency of ABLV infection in Australian bats.

View Article and Find Full Text PDF

In recent years, outbreaks of exotic as well as newly emerging infectious diseases have highlighted the importance of biosecurity for the Australian horse industry. As the first potentially fatal zoonosis transmissible from horses to humans in Australia, Hendra virus has emphasised the need to incorporate sound hygiene and general biosecurity practices into day-to-day horse management. Recommended measures are widely publicised, but implementation is at the discretion of the individual owner.

View Article and Find Full Text PDF

Hendra virus causes sporadic zoonotic disease in Australia following spill over from flying foxes to horses and from horses to people. Prevention and risk mitigation strategies such as vaccination of horses or biosecurity and property management measures are widely publicised, but hinge on initiative and action taken by horse owners as they mediate management, care and treatment of their animals. Hence, underlying beliefs, values and attitudes of horse owners influence their uptake of recommended risk mitigation measures.

View Article and Find Full Text PDF

Hendra virus causes acute and highly fatal infection in horses and humans. Pteropid bats (flying-foxes) are the natural host of the virus, with age and species being risk factors for infection. Urine is the primary route of excretion in flying-foxes, with viral RNA more frequently detected in Pteropus alecto and P.

View Article and Find Full Text PDF

The urban presence of flying-foxes (pteropid bats) in eastern Australia has increased in the last 20 years, putatively reflecting broader landscape change. The influx of large numbers often precipitates community angst, typically stemming from concerns about loss of social amenity, economic loss or negative health impacts from recently emerged bat-mediated zoonotic diseases such as Hendra virus and Australian bat lyssavirus. Local authorities and state wildlife authorities are increasingly asked to approve the dispersal or modification of flying-fox roosts to address expressed concerns, yet the scale of this concern within the community, and the veracity of the basis for concern are often unclear.

View Article and Find Full Text PDF

Background: In 2008-09, evidence of Reston ebolavirus (RESTV) infection was found in domestic pigs and pig workers in the Philippines. With species of bats having been shown to be the cryptic reservoir of filoviruses elsewhere, the Philippine government, in conjunction with the Food and Agriculture Organization of the United Nations, assembled a multi-disciplinary and multi-institutional team to investigate Philippine bats as the possible reservoir of RESTV.

Methods: The team undertook surveillance of bat populations at multiple locations during 2010 using both serology and molecular assays.

View Article and Find Full Text PDF

Hendra virus (HeV) is a lethal zoonotic agent that emerged in 1994 in Australia. Pteropid bats (flying-foxes) are the natural reservoir. To date, HeV has spilled over from flying-foxes to horses on 51 known occasions, and from infected horses to close-contact humans on seven occasions.

View Article and Find Full Text PDF

Understanding the diversity of henipaviruses and related viruses is important in determining the viral ecology within flying-fox populations and assessing the potential threat posed by these agents. This study sought to identify the abundance and diversity of previously unknown paramyxoviruses (UPVs) in Australian flying-fox species (Pteropus alecto, Pteropus scapulatus, Pteropus poliocephalus and Pteropus conspicillatus) and in the Christmas Island species Pteropus melanotus natalis. Using a degenerative reverse transcription-PCR specific for the L gene of known species of the genus Henipavirus and two closely related paramyxovirus genera Respirovirus and Morbillivirus, we identified an abundance and diversity of previously UPVs, with a representative 31 UPVs clustering in eight distinct groups (100 UPVs/495 samples).

View Article and Find Full Text PDF

Zoonoses from wildlife threaten global public health. Hendra virus is one of several zoonotic viral diseases that have recently emerged from Pteropus species fruit-bats (flying-foxes). Most hypotheses regarding persistence of Hendra virus within flying-fox populations emphasize horizontal transmission within local populations (colonies) via urine and other secretions, and transmission among colonies via migration.

View Article and Find Full Text PDF

Nipah virus (NiV) (Genus Henipavirus) is a recently emerged zoonotic virus that causes severe disease in humans and has been found in bats of the genus Pteropus. Whilst NiV has not been detected in Australia, evidence for NiV-infection has been found in pteropid bats in some of Australia's closest neighbours. The aim of this study was to determine the occurrence of henipaviruses in fruit bat (Family Pteropodidae) populations to the north of Australia.

View Article and Find Full Text PDF

We conducted cross-sectional and longitudinal studies to determine the distribution of and risk factors for seropositivity to Nipah virus (NiV) among Pteropus vampyrus and P. hypomelanus bats in Peninsular Malaysia. Neutralizing antibodies against NiV were detected at most locations surveyed.

View Article and Find Full Text PDF

Henipaviruses cause fatal infection in humans and domestic animals. Transmission from fruit bats, the wildlife reservoirs of henipaviruses, is putatively driven (at least in part) by anthropogenic changes that alter host ecology. Human and domestic animal fatalities occur regularly in Asia and Australia, but recent findings suggest henipaviruses are present in bats across the Old World tropics.

View Article and Find Full Text PDF

Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings.

View Article and Find Full Text PDF

The genus Henipavirus in the family Paramyxoviridae contains two viruses, Hendra virus (HeV) and Nipah virus (NiV) for which pteropid bats act as the main natural reservoir. Each virus also causes serious and commonly lethal infection of people as well as various species of domestic animals, however little is known about the associated mechanisms of pathogenesis. Here, we report the isolation and characterization of a new paramyxovirus from pteropid bats, Cedar virus (CedPV), which shares significant features with the known henipaviruses.

View Article and Find Full Text PDF

Background: Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery.

View Article and Find Full Text PDF

The genus Henipavirus includes Hendra virus (HeV) and Nipah virus (NiV), for which fruit bats (particularly those of the genus Pteropus) are considered to be the wildlife reservoir. The recognition of henipaviruses occurring across a wider geographic and host range suggests the possibility of the virus entering the United Kingdom (UK). To estimate the likelihood of henipaviruses entering the UK, a qualitative release assessment was undertaken.

View Article and Find Full Text PDF

This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus neutralisation test.

View Article and Find Full Text PDF