Publications by authors named "Humberto d' Muniz Pereira"

Transthyretin (TTR) is a vertebrate-exclusive transport protein that plays a key role in binding and distributing thyroid hormones. However, its evolutionary origin lies in the duplication of the gene that encoding the enzyme 5-hydroxyisourate hydrolase (HIUase), which is involved in uric acid metabolism. Unlike TTR, HIUase is ubiquitous in both prokaryotes and eukaryotes, with the exception of hominids.

View Article and Find Full Text PDF

Septins are filamentous nucleotide-binding proteins which can associate with membranes in a curvature-dependent manner leading to structural remodelling and barrier formation. Ciona intestinalis, a model for exploring the development and evolution of the chordate lineage, has only four septin-coding genes within its genome. These represent orthologues of the four classical mammalian subgroups, making it a minimalist non-redundant model for studying the modular assembly of septins into linear oligomers and thereby filamentous polymers.

View Article and Find Full Text PDF

The 21st amino acid, selenocysteine (Sec), is synthesized on its dedicated transfer RNA (tRNA). In bacteria, Sec is synthesized from Ser-tRNA by Selenocysteine Synthase (SelA), which is a pivotal enzyme in the biosynthesis of Sec. The structural characterization of bacterial SelA is of paramount importance to decipher its catalytic mechanism and its role in the regulation of the Sec-synthesis pathway.

View Article and Find Full Text PDF

l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH).

View Article and Find Full Text PDF
Article Synopsis
  • * A new study presents the structure of a heterodimeric septin coiled coil between SEPT14 and SEPT7, showing a parallel arrangement that contradicts previous models of assembly.
  • * This structure has unique coiled-coil characteristics, including unusual packing and distinct regions that may facilitate selective recognition and proper assembly of protofilaments, suggesting crucial roles for specific sequences.
View Article and Find Full Text PDF

Several hydrolases have been described to degrade polyethylene terephthalate (PET) at moderate temperatures ranging from 25°C to 40°C. These mesophilic PET hydrolases (PETases) are less efficient in degrading this plastic polymer than their thermophilic homologs and have, therefore, been the subject of many protein engineering campaigns. However, enhancing their enzymatic activity through rational design or directed evolution poses a formidable challenge due to the need for exploring a large number of mutations.

View Article and Find Full Text PDF

Septins, often described as the fourth component of the cytoskeleton, are structural proteins found in a vast variety of living beings. They are related to small GTPases and thus, generally, present GTPase activity which may play an important (although incompletely understood) role in their organization and function. Septins polymerize into long non-polar filaments, in which each subunit interacts with two others by alternating interfaces, NC and G.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs.

View Article and Find Full Text PDF

Schistosomiasis is a parasitic infection caused by trematode worms (also called blood flukes) of the genus sp., which affects over 230 million people worldwide, causing 200,000 deaths annually. There is no vaccine or new drugs available, which represents a worrying aspect, since there is loss of sensitivity of the parasite to the medication recommended by the World Health Organization, Praziquantel.

View Article and Find Full Text PDF

Septins possess a conserved guanine nucleotide-binding (G) domain that participates in the stabilization of organized hetero-oligomeric complexes which assemble into filaments, rings and network-like structures. The fruit fly, Drosophila melanogaster, has five such septin genes encoding Sep1, Sep2, Sep4, Sep5 and Pnut. Here, we report the crystal structure of the heterodimer formed between the G-domains of Sep1 and Sep2, the first from an insect to be described to date.

View Article and Find Full Text PDF

In plants, it is well-known that ascorbic acid (vitamin C) can be synthesized via multiple metabolic pathways but there is still much to be learned concerning their integration and control mechanisms. Furthermore, the structural biology of the component enzymes has been poorly exploited. Here we describe the first crystal structure for an L-galactose dehydrogenase [Spinacia oleracea GDH (SoGDH) from spinach], from the D-mannose/L-galactose (Smirnoff-Wheeler) pathway which converts L-galactose into L-galactono-1,4-lactone.

View Article and Find Full Text PDF

Protein tyrosine phosphatases (PTPs) are key virulence factors in pathogenic bacteria, consequently, they have become important targets for new approaches against these pathogens, especially in the fight against antibiotic resistance. Among these targets of interest YopH (Yersinia outer protein H) from virulent species of Yersinia is an example. PTPs can be reversibly inhibited by nitric oxide (NO) since the oxidative modification of cysteine residues may influence the protein structure and catalytic activity.

View Article and Find Full Text PDF

In order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition.

View Article and Find Full Text PDF

SUGARWINs are PR-4 proteins associated with sugarcane defense against phytopathogens. Their expression is induced in response to damage by larvae. These proteins play an important role in plant defense, in particular against fungal pathogens, such as (Went) and .

View Article and Find Full Text PDF

In order to form functional filaments, human septins must assemble into hetero-oligomeric rod-like particles which polymerize end-to-end. The rules governing the assembly of these particles and the subsequent filaments are incompletely understood. Although crystallographic approaches have been successful in studying the separate components of the system, there has been difficulty in obtaining high resolution structures of the full particle.

View Article and Find Full Text PDF

Schistosomiasis is a parasitic disease that is part of the neglected tropical diseases (NTDs), which cause significant levels of morbidity and mortality in millions of people throughout the world. The enzyme purine nucleoside phosphorylase from (PNP) represents a potential target for discovering new agents, and neolignans stand out as an important class of compounds. In this work, molecular modeling studies and biological assays of a set of neolignans were conducted against the PNP enzymes of the parasite and the human homologue (PNP).

View Article and Find Full Text PDF

Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins.

View Article and Find Full Text PDF

Schistosomiasis, caused by trematode worm, affects more than 1.5 million people in Brazil. The current treatment consists in the administration of Praziquantel, the only medicine used for treatment for more than 40 years.

View Article and Find Full Text PDF

Eukaryotes from the Excavata superphylum have been used as models to study the evolution of cellular molecular processes. Strikingly, human parasites of the Trypanosomatidae family (T. brucei, T.

View Article and Find Full Text PDF

The assembly of a septin filament requires that homologous monomers must distinguish between one another in establishing appropriate interfaces with their neighbors. To understand this phenomenon at the molecular level, we present the first four crystal structures of heterodimeric septin complexes. We describe in detail the two distinct types of G-interface present within the octameric particles, which must polymerize to form filaments.

View Article and Find Full Text PDF

Dihydrofolate reductase (DHFR) is an essential enzyme for nucleotide metabolism used to obtain energy and structural nucleic acids. Schistosoma mansoni has all the pathways for pyrimidine biosynthesis, which include the thymidylate cycle and, consequentially, the DHFR enzyme. Here, we describe the characterization of Schistosoma mansoni DHFR (SmDHFR) using isothermal titration calorimetry for the enzymatic activity and thermodynamic determination, also the folate analogs inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • Human septins 3, 9, and 12, part of the SEPT3 subgroup, are unique due to their lack of a C-terminal coiled coil and formation of octameric protofilaments, unlike other hexameric septins.
  • These septins can self-assemble into mixed filaments and form higher-order complexes with membranes, potentially influencing various cellular processes.
  • The study presents detailed crystal structures of the GTP-binding domains of SEPT3 members, revealing a mechanism for membrane interaction linked to GTP binding and hydrolysis, underscoring the special role of this subgroup in cellular functions.
View Article and Find Full Text PDF

Nucleoside diphosphate kinases (NDPKs) are crucial to keep the high triphosphate nucleotide levels in the biological process. The enzymatic mechanism has been extensively described; however, the structural characteristics and kinetic parameters have never been fully determined. In Schistosoma mansoni, NDPK (SmNDPK) is directly involved in the pyrimidine and purine salvage pathways, being essential for nucleotide metabolism.

View Article and Find Full Text PDF