Immunopharmacol Immunotoxicol
April 2017
Background: Secretory IgA (SIgA) and the polymeric immunoglobulin receptor (pIgR) have a pivotal role in gut homeostasis. Bovine lactoferrin (bLf) has been shown to modulate intestinal immunity and endogenous corticosterone. Considering the regionalization of the intestinal immune response, the aim of this work was to compare the impact of bLf on the IgA response in the proximal versus distal small intestine under physiological conditions.
View Article and Find Full Text PDFSecretory IgA (SIgA) has a pivotal role in gut homeostasis, which can be disturbed by stress. SIgA is formed by IgA-dimers (associated by the J-chain) and the secretory component, a protein derivative of polymeric immunoglobulin receptor (pIgR). Given the gut immuno-modulatory properties of bovine lactoferrin (bLf), the aim of this study was to compare, after bLf treatment followed by acute stress, the IgA response and IgA-associated parameters in proximal versus distal small intestine.
View Article and Find Full Text PDFIntermittent fasting (IF) reportedly increases resistance and intestinal IgA response to Salmonella typhimurium infection in mature mice. The aim of this study was to explore the effect of aging on the aforementioned improved immune response found with IF. Middle-aged male BALB/c mice were submitted to IF or ad libitum (AL) feeding for 40 weeks and then orally infected with S.
View Article and Find Full Text PDFIntermittent fasting prolongs the lifespan and unlike intense stress provides health benefits. Given the role of the immunoglobulin A (IgA) in the intestinal homeostasis, the aim of this study was to assess the impact of intermittent fasting plus intense stress on secretory IgA (SIgA) production and other mucosal parameters in the duodenum and ileum. Two groups of six mice, with intermittent fasting or fed ad libitum for 12weeks, were submitted to a session of intense stress by a bout of forced swimming.
View Article and Find Full Text PDFStress is a response of the central nervous system to environmental stimuli perceived as a threat to homeostasis. The stress response triggers the generation of neurotransmitters and hormones from the hypothalamus pituitary adrenal axis, sympathetic axis and brain gut axis, and in this way modulates the intestinal immune system. The effects of psychological stress on intestinal immunity have been investigated mostly with the restraint/immobilization rodent model, resulting in an up or down modulation of SIgA levels depending on the intensity and time of exposure to stress.
View Article and Find Full Text PDFIntestinal homeostasis effectors, secretory IgA (SIgA) and polymeric immunoglobulin receptor (pIgR), have been evaluated in proximal and distal small intestine with moderate-exercise training but not with strenuous exercise or a combination of these two protocols. Therefore, two groups of mice (n=6-8) were submitted to strenuous exercise, one with and one without previous training. The control group had no exercise protocol.
View Article and Find Full Text PDFAlthough caloric restriction (CR) apparently has beneficial effects on the immune system, its effects on the immunological function of the intestinal mucosa are little known. The present study explored the effect of CR on the innate and adaptive intestinal immunity of mice. Balb/c mice were either fed ad libitum (control) or on alternate days fed ad libitum and fasted (caloric restriction).
View Article and Find Full Text PDFThe aim of the present study was to determine the effect of moderate exercise on the production and secretion of IgA in mouse duodenum, on lymphocyte levels in the lamina propria, and on gene expression encoding for cytokines that regulate the synthesis of α-chain of IgA and the expression of pIgR in the lamina propria. Two groups of young Balb/c mice were fed ad libitum, one sedentary and the other with an exercise program (swimming) for 16 weeks. IgA levels in the duodenum were quantified by ELISA; the number of IgA containing cells as well as B cells, CD4(+) and CD8(+) T cells in the duodenal mucosa was determined by immunohistochemistry; gene expression was analyzed by real-time PCR, and the expression of proteins by Western blotting.
View Article and Find Full Text PDFThe aim of this study was to determine the effect of caloric restriction (CR) in mouse small intestine on the production and secretion of immunoglobulin (Ig) A, the population of lymphocytes in the lamina propria, and the expression of cytokines that mediate and regulate innate and adaptive immunity. One group of young Balb/c mice was fed ad libitum, while the CR group was fed ad libitum and fasted on alternate days. When mice were six months old, IgA levels in the proximal small intestine were quantified by enzyme-linked immunosorbent assay, while the number of IgA containing cells, CD4(+) T cells and CD8(+) T cells in the duodenal mucosa was determined by immunohistochemistry.
View Article and Find Full Text PDFIt is well known that CR (caloric restriction) reduces oxidative damage to proteins, lipids and DNA, although the underlying mechanism is unclear. However, information concerning the effect of CR on the host response to infection is sparse. In this study, 6-month-old mice that were fed AL (ad libitum) or with a CR diet were infected with Salmonella serovar Typhimurium.
View Article and Find Full Text PDFThe most abundant intestinal immunoglobulin and first line of specific immunological defense against environmental antigens is secretory immunoglobulin A. To better understand the effect of repeated stress on the secretion of intestinal IgA, the effects of restraint stress on IgA concentration and mRNA expression of the gene for the alpha-chain of IgA was assessed in both the duodenum and ileum of the rats. Restraint stress induced an increase in intestinal IgA, which was blocked by an adrenalectomy, suggesting a role of catecholamines and glucocorticoids.
View Article and Find Full Text PDFSince the role of striatal GABAergic medium-sized spiny (MSP) neurons in the modulation of the immune responses is largely unknown, we evaluated the humoral immune response in rats with bilateral lesion of the striatum caused by quinolinic acid, which destroys MSP neurons. Sham-operated rats and those with striatal lesions were immunized either with TNP-LPS, a T-independent antigen type 1, or one of several T-dependent antigens: ovoalbumin, bovine serum albumin, lysozyme, sheep red blood cells (SRBC) or outer membrane proteins (OMP) of Salmonella enterica serovar Typhimurium. The specific levels of serum IgM and IgG, as well as intestinal IgA antibodies were determined either by enzyme-linked immunosorbent assay (ELISA) or a haemagglutination assay 5 or 7 days after immunization.
View Article and Find Full Text PDFThe impact of restraint stress on the intestinal immune system, particularly on intestinal intraepithelial lymphocytes (i-IEL), has not been described in detail. Thus, the purpose of this study was to assess the effects of restraint stress, including those produced by increases in glucocorticoids and catecholamines, on the population of i-IEL. Mice were exposed to 1 or 4h restraint stress for 4 day, and the number of IEL in the mucosa of the proximal small intestine was determined by immunohistochemistry.
View Article and Find Full Text PDFThe effects of restraint stress on the intestinal humoral immune system, particularly those about intestinal IgA production, have not been explored in detail. Thus, the purpose of this study was to assess the effect of restraint stress on the production and secretion of intestinal IgA as well as on the number of IgA+ cells in the intestinal lamina propria. The involvement of glucocorticoids and catecholamines were also evaluated.
View Article and Find Full Text PDF