Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood.
View Article and Find Full Text PDFBraz J Microbiol
September 2021
There is increasing evidence showing positive association between changes in oral microbiome and the occurrence of oral squamous cell carcinoma (OSCC). Alcohol- and nicotine-related products can induce microbial changes but are still unknown if these changes are related to cancerous lesion sites. In an attempt to understand how these changes can influence the OSCC development and maintenance, the aim of this study was to investigate the oral microbiome linked with OSCC as well as to identify functional signatures and associate them with healthy or precancerous and cancerous sites.
View Article and Find Full Text PDFBMC Cancer
January 2018
Background: FAM3B/PANDER is a novel cytokine-like protein that induces apoptosis in insulin-secreting beta-cells. Since in silico data revealed that FAM3B can be expressed in prostate tumors, we evaluated the putative role of this cytokine in prostate tumor progression.
Methods: FAM3B expression was analyzed by quantitative PCR in tumor tissue clinical samples and prostate tumor cell lines.
The hippocampus is a brain region that is rich in nicotinic acetylcholine receptors (nAChRs), especially the α7 subtype. The hippocampus is severely affected in disorders that have a neuroinflammatory component, such as Alzheimer's disease, Parkinson's disease, and schizophrenia. Previous studies demonstrated both in vivo and in vitro that nicotine inhibits immunological responses, including those that are triggered by the inflammatory agent lipopolysaccharide (LPS), the endotoxin of Gram-negative bacteria.
View Article and Find Full Text PDFAims: NADPH oxidase (NOX) is a known source of superoxide anions in phagocytic and non-phagocytic cells. In this study, the presence of this enzyme in human pancreatic islets and the importance of NADPH oxidase in human β-cell function were investigated.
Main Methods And Key Findings: In isolated human pancreatic islets, the expression of NADPH oxidase components was evidenced by real-time PCR (p22(PHOX), p47(PHOX) and p67(PHOX)), Western blotting (p47(PHOX) and p67(PHOX)) and immunohistochemistry (p47(PHOX), p67(PHOX) and gp91(PHOX)).
Background: Toll-like receptor 4 (TLR4) is widely recognized as an essential element in the triggering of innate immunity, binding pathogen-associated molecules such as Lipopolysaccharide (LPS), and in initiating a cascade of pro-inflammatory events. Evidence for TLR4 expression in non-immune cells, including pancreatic β-cells, has been shown, but, the functional role of TLR4 in the physiology of human pancreatic β-cells is still to be clearly established. We investigated whether TLR4 is present in β-cells purified from freshly isolated human islets and confirmed the results using MIN6 mouse insulinoma cells, by analyzing the effects of TLR4 expression on cell viability and insulin homeostasis.
View Article and Find Full Text PDFCaspases are central players in proteolytic pathways that regulate cellular processes such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAF15 as a novel caspase substrate in a trial study.
View Article and Find Full Text PDFIn cells, molecular networks such as gene regulatory networks are the basis of biological complexity. Therefore, gene regulatory networks have become the core of research in systems biology. Understanding the processes underlying the several extracellular regulators, signal transduction, protein-protein interactions, and differential gene expression processes requires detailed molecular description of the protein and gene networks involved.
View Article and Find Full Text PDFAminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4(+) ion and H2O2.
View Article and Find Full Text PDFBackground: To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome.
View Article and Find Full Text PDF