Publications by authors named "Humberto Lubriel Mendoza-Figueroa"

Aims: Validating the docking procedure and maintaining the structural water molecules at HDAC8 catalytic site.

Background: Molecular docking simulations play a significant role in Computer-Aided Drug Design, contributing to the development of new molecules. To ensure the reliability of these simulations, a validation process called "self-docking or re-docking" is employed, focusing on the binding mode of a ligand co-crystallized with the protein of interest.

View Article and Find Full Text PDF

Flavonoids, a phenolic compounds class widely distributed in the plant kingdom, have attracted much interest for their implications on several health and disease processes. Usually, the consumption of this type of compounds is approximately 1 g/d, primarily obtained from cereals, chocolate, and dry legumes ensuring its beneficial role in maintaining the homeostasis of the human body. In this context, in cancer disease prominent data points to the role of flavonoids as adjuvant treatment aimed at the regression of the disease.

View Article and Find Full Text PDF

Background: Sargassum is a marine organism that, under specific conditions, drastically increases its population damaging the environment and risking other organisms. However, sargassum could represent a source of bioactive compounds to treat different diseases such as cancer. Thus, aqueous, ethanolic, and ethyl acetate extracts of sargassum from Playa del Carmen, Mexico, were subjected to metabolomic and antiproliferative assays in breast cancer cells.

View Article and Find Full Text PDF

The implementation of chemo- and bioinformatics tools is a crucial step in the design of structure-based drugs, enabling the identification of more specific and effective molecules against cancer without side effects. In this study, three new compounds were designed and synthesized with suitable absorption, distribution, metabolism, excretion and toxicity (ADME-tox) properties and high affinity for the G protein-coupled estrogen receptor (GPER) binding site by in silico methods, which correlated with the growth inhibitory activity tested in a cluster of cancer cell lines. Docking and molecular dynamics (MD) simulations accompanied by a molecular mechanics/generalized Born surface area (MMGBSA) approach yielded the binding modes and energetic features of the proposed compounds on GPER.

View Article and Find Full Text PDF