Publications by authors named "Humberto J Jose"

In this work photocatalytic ethylene degradation (TiO-UV) was applied in green cherry tomatoes with the aim to control biochemical and physiological changes during ripening. Photocatalytic process was performed at 18 °C  ±  2 °C and 85% HR for 10 days using continuous air flux. Ethylene, O and CO concentration from cherry tomatoes under TiO-UV and control (c) fruits, were measured by GC-MS for 10 days.

View Article and Find Full Text PDF

In this study, silver molybdate was used as a catalyst in different oxidation processes to degrade pantoprazole (PAN) from aqueous suspension. The catalyst was synthesized using a controlled precipitation method and characterized by XRD, FTIR spectroscopy, BET analysis, Zeta potential, FEG-SEM/EDS, DRS and EPR. The α- and β-phases of AgMoO were identified as crystalline structure of the butterfly-shaped particles.

View Article and Find Full Text PDF

1,4-Dioxane is a synthetic cyclic ether traditionally used as a chlorinated solvent stabilizer. It is a small molecule and recalcitrant compound that is difficult to remove by conventional processes and in this regard, there is a need for the development of new technologies. In this study, an innovative CuO-coated ceramic membrane (CM) reactor system that can be used to oxidize 1,4-dioxane dissolved in surface water by catalytic ozonation was developed.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are known to be hazardous and associated with several human health problems. Thus, many technologies have been developed in recent years for their removal, such as thermal catalysis, photocatalysis and ozonization. In this study, the main objective was to evaluate the effects of incorporating titanium dioxide into an acrylic-based paint for gaseous toluene abatement.

View Article and Find Full Text PDF

Iron oxide with a high degree of purity was recovered from waste and used as an environmentally friendly, low-cost catalyst in the application of the photo-Fenton process to simulated petrochemical wastewater (SPW). Iron oxide nanoparticles were characterized by X-ray powder diffraction, transmission electron microscopy, N adsorption/desorption isotherms, zeta potential, toxicity and atomic absorption spectrometry. The experiments were performed in a batch photochemical reactor, at 20 ± 2.

View Article and Find Full Text PDF

The photocatalytic degradation of high molecular weight polyvinylpyrrolidone (PVP), a water-soluble polymer, using a TiO/HO/UV system was studied in an annular photoreactor using a mercury vapor lamp (125 W) as the radiation source. The effect of the initial hydrogen peroxide concentration and the operating conditions, such as initial concentration of PVP, photocatalyst dosage and initial pH, on the reaction rate was also evaluated. It was observed that the efficiency of the TiO/HO/UV system was 33% higher than that of a system without HO, reaching total organic carbon removals of above 80% in 6 h of reaction, depending on the experimental conditions.

View Article and Find Full Text PDF

The study of different renewable energy sources has been intensifying due to the current climate changes; therefore, the present work had the objective to characterize physicochemically the pistachio shell waste and evaluate kinetic parameters of its combustion. The pistachio shell was characterized through proximate analysis, ultimate analysis, SEM, and FTIR. The thermal and kinetic behaviors were evaluated by a thermogravimetric analyzer under oxidant atmosphere between room temperature and 1000 °C, in which the process was performed in three different heating rates (20, 30, and 40 °C min).

View Article and Find Full Text PDF

This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar.

View Article and Find Full Text PDF

Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process.

View Article and Find Full Text PDF

Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution.

View Article and Find Full Text PDF

In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.

View Article and Find Full Text PDF

The degradation products of the macrolide antibiotic erythromycin A (ERY) arising from direct ozone attack and hydroxyl radical attack are presented for the first time. Ozone treatment was carried out by spiking ozone stock solutions to solutions containing ERY-ERY:O3 = 1:5 and 1:10 (M:M), while, in parallel, t-BuOH was used as a hydroxyl radical (*OH) scavenger. The advanced oxidation processes (AOPs) O3/UV, O3/H2O2, and UV/H2O2 were carried out to recognize and verify possible differences between their primary degradation products; the initial concentrations were ERY:O3 = 1:5 (M:M), ERY:O3:H202 = 1:5:5 (M:M:M), or ERY:H202 = 1:5 (M:M), respectively.

View Article and Find Full Text PDF

The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content--polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF)--were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards.

View Article and Find Full Text PDF

The physicochemical treatment of the wastewater from a meat processing industry was studied using three ferric salts as coagulants in conjunction with four different polymers as coagulation aids by batch column flotation. The effluent was characterized in terms of pH (6.5-6.

View Article and Find Full Text PDF

The application of advanced oxidation processes (H(2)O(2)/UV, TiO(2)/H(2)O(2)/UV and TiO(2)/UV) to treat tannery wastewater was investigated. The experiments were performed in batch and continuous UV reactors, using TiO(2) as a catalyst. The effect of the hydrogen peroxide concentration on the degradation kinetics was evaluated in the concentration range 0-1800 mg L(-1).

View Article and Find Full Text PDF

The evaluation of photonic efficiency in heterogeneous photocatalysis remains elusive because the number of absorbed photons is difficult to assess experimentally. The photonic efficiency of heterogeneous photocatalytic reactors depends on the reactor geometry, irradiation source, and photocatalyst properties. In this work, the relative photonic efficiency of heterogeneous photocatalytic reactors to degrade an azo dye was evaluated using phenol as the standard system.

View Article and Find Full Text PDF