The sums of position- and momentum-space mutual information measures are used to examine the pairwise and higher-order statistical correlation in the ground states of N-particle coupled oscillators. Analytical expressions for these measures are shown to be related to the logarithmic interaction energies of these states, plus those of mirror states where the intensities of the one- and two-body potentials are interchanged, and the nature of the attractive or repulsive interaction is opposite to that in the original state. The measures separate the contributions from the interactions and those from the effective interactions due to marginalization into different terms.
View Article and Find Full Text PDFThis paper presents a theoretical and experimental evaluation of benzidine derivatives as electroactive molecules for organic redox flow batteries. These redox indicators are novel electroactive materials that can perform multielectron transfers in aqueous media. We performed the synthesis, electrochemical characterization, and theoretical study of the dimer of sodium 4-diphenylamine sulfonate, a benzidine derivative with high water solubility properties.
View Article and Find Full Text PDFCompounds from the 2,2'-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2'-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the second deprotonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations.
View Article and Find Full Text PDFThe Marcus-Hush theory has been successfully applied to describe and predict the activation barriers and hence the electron-transfer (ET) rates in several physicochemical and biological systems. This theory assumes that in the ET reaction, the geometry of the free Gibbs energy landscape is parabolic, with equal curvature near the local minimum for both reactants and products. In spite of its achievements, more realistic models have included the assumption of the two parabolas having not the same curvature.
View Article and Find Full Text PDFThe effects of bath coupling on an interacting two-particle quantum system are studied using tools from information theory. Shannon entropies of the one (reduced) and two-particle distribution functions in position, momentum and separable phase-space are examined. Results show that the presence of the bath leads to a delocalization of the distribution functions in position space, and a localization in momentum space.
View Article and Find Full Text PDF