Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation.
View Article and Find Full Text PDFHistone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation.
View Article and Find Full Text PDFConjugation with poly(ethylene glycol) ("PEGylation") is a widely used approach for improving the therapeutic propensities of peptide and protein drugs through prolonging bloodstream circulation, reducing toxicity and immunogenicity, and improving proteolytic stability. In the present study, we investigate how PEGylation affects the interaction of host defense peptides (HDPs) with bacterial lipopolysaccharide (LPS) as well as HDP suppression of LPS-induced cell activation. In particular, we investigate the effects of PEGylation site for KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), a peptide displaying potent anti-inflammatory effects, primarily provided by its N-terminal part.
View Article and Find Full Text PDFThe sterile α motif, also called the SAM domain, is known to form homo or heterocomplexes that modulate diverse biological functions through the regulation of specific protein-protein interactions. The MAPK pathway of budding yeast is comprised of a three-tier kinase system akin to mammals. The MAPKKK Ste11 protein of yeast contains a homodimer SAM domain, which is critical for transmitting cues to the downstream kinases.
View Article and Find Full Text PDFThe recent development of plants that overexpress antimicrobial peptides (AMPs) provides opportunities for controlling plant diseases. Because plants employ a broad-spectrum antimicrobial defense, including those based on AMPs, transgenic modification for AMP overexpression represents a potential way to utilize a defense system already present in plants. Herein, using an array of techniques and approaches, we report on VG16KRKP and KYE28, two antimicrobial peptides, which in combination exhibit synergistic antimicrobial effects against plant pathogens and are resistant against plant proteases.
View Article and Find Full Text PDFAntimicrobial Peptides (AMPs), within their realm incorporate a diverse group of structurally and functionally varied peptides, playing crucial roles in innate immunity. Over the last few decades, the field of AMP has seen a huge upsurge, mainly owing to the generation of the so-called drug resistant 'superbugs' as well as limitations associated with the existing antimicrobial agents. Due to their resilient biological properties, AMPs can very well form the sustainable alternative for nextgeneration therapeutic agents.
View Article and Find Full Text PDFTwo-dimensional (2D) tungsten disulfide (WS) quantum dots offer numerous promising applications in materials and optoelectronic sciences. Additionally, the catalytic and photoluminescence properties of ultra-small WS nanoparticles are of potential interest in biomedical sciences. Addressing the use of WS in the context of infection, the present study describes the conjugation of two potent antimicrobial peptides with WS quantum dots, as well as the application of the resulting conjugates in antimicrobial therapy and bioimaging.
View Article and Find Full Text PDFAntimicrobial peptides have gained widespread attention as an alternative to the conventional antibiotics for combating microbial infections. Here, we report a detailed structure-function correlation of two nontoxic, nonhemolytic, and salt-tolerant de novo designed seven-residue leucine-lysine-based peptides, NHLKWLKKLCONH (P4) and NHLRWLRRLCONH (P5), with strong antimicrobial and antifungal activity. Biological experiments, low- and high-resolution spectroscopic techniques in conjunction with molecular dynamics simulation studies, could establish the structure-function correlation.
View Article and Find Full Text PDFAlthough nanoparticle-tagged antimicrobal peptides have gained considerable importance in recent years, their structure-function correlation has not yet been explored. Here, we have studied the mechanism of action of a designed antimicrobial peptide, VG16KRKP (VARGWKRKCPLFGKGG), delivered via gold nanoparticle tagging against Salmonella infection by combining biological experiments with high- and low-resolution spectroscopic techniques. In comparison with the free VG16KRKP peptide or gold nanoparticle alone, the conjugated variant, Au-VG16KRKP, is non-cytotoxic to eukaryotic cells, but exhibits strong bacteriolytic activity in culture.
View Article and Find Full Text PDFIn this study, we report an interaction study of a 13-residue analogue peptide VG13P (VARGWGRKCPLFG), derived from a designed VG16KRKP peptide (VARGWKRKCPLFGKGG), with a Lys6Gly mutation and removal of the last three residues Lys-Gly-Gly, in lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria and responsible for sepsis or septic shock. VG13P displays an enhanced anti-endotoxin property as evident from significant reduction in LPS-induced TNF-α gene expression levels in a monocytic cell line, while it retains almost unchanged antimicrobial activity as its parent VG16KRKP against Gram-negative bacterial as well as fungal pathogens. In addition, in vitro LPS binding properties of VG13P in comparison to its parent VG16KRKP also remained unhindered, suggesting that the flexible C-terminal end of VG16KRKP may not play a major role in its observed antibacterial and LPS binding properties.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are ubiquitous and vital components of innate defense response that present themselves as potential candidates for drug design, and aim to control plant and animal diseases. Though their application for plant disease management has long been studied with natural AMPs, cytotoxicity and stability related shortcomings for the development of transgenic plants limit their usage. Newer technologies like molecular modelling, NMR spectroscopy and combinatorial chemistry allow screening for potent candidates and provide new avenues for the generation of rationally designed synthetic AMPs with multiple biological functions.
View Article and Find Full Text PDFThere is a significant need for developing compounds that kill Cryptococcus neoformans, the fungal pathogen that causes meningoencephalitis in immunocompromised individuals. Here, we report the mode of action of a designed antifungal peptide, VG16KRKP (VARGWKRKCPLFGKGG) against C. neoformans.
View Article and Find Full Text PDFThe aggregation of insulin into amyloid fibers has been a limiting factor in the development of fast acting insulin analogues, creating a demand for excipients that limit aggregation. Despite the potential demand, inhibitors specifically targeting insulin have been few in number. Here we report a non-toxic and serum stable-designed heptapeptide, KR7 (KPWWPRR-NH), that differs significantly from the primarily hydrophobic sequences that have been previously used to interfere with insulin amyloid fibrillation.
View Article and Find Full Text PDF