Publications by authors named "Humaira Farzana"

Sturm-Liouville problems have yielded the biggest achievement in the spectral theory of ordinary differential operators. Sturm-Liouville boundary value issues appear in many key applications in natural sciences. All the eigenvalues for the standard Sturm-Liouville problem are guaranteed to be real and simple, and the related eigenfunctions form a basis in a suitable Hilbert space.

View Article and Find Full Text PDF

The numerical approximation of eigenvalues of higher even order boundary value problems has sparked a lot of interest in recent years. However, it is always difficult to deal with higher-order BVPs because of the presence of boundary conditions. The objective of this work is to investigate a few higher order eigenvalue (Rayleigh numbers) problems utilizing the method of Galerkin weighted residual (MWR) and the effect of solution due to direct implementation of polynomial bases.

View Article and Find Full Text PDF