An artificial neural network (ANN) is a biologically inspired computational technique that imitates the behavior and learning process of the human brain. In this study, ANN technique was applied to assess the gasification of municipal solid waste (MSW) with the aim of enhancing the H production. The experiments were conducted using a horizontal tube reactor under different parameters: temperatures, MSW loadings, residence times, and equivalence ratios.
View Article and Find Full Text PDFPavement recycling is actively applied on asphalt roads due to ageing problems associated with bituminous binders when exposed to weathering and trafficking during their service life. Recycling of asphalt occurs through rejuvenator agents. This study utilised bio-oil produced from hydrothermal liquefaction of waste plastic films (linear low-density polyethylene - LLDPE) to rejuvenate laboratory-aged bitumen.
View Article and Find Full Text PDFPolymer composites are fabricated by incorporating fillers into a polymer matrix. The intent for addition of fillers is to improve the physical, mechanical, chemical and rheological properties of the composite. This study reports on a unique polymer composite using hydrochar, synthesised by microwave-assisted hydrothermal carbonization of rice husk, as filler in polylactide matrix.
View Article and Find Full Text PDFThe process parameters of microwave-induced hydrothermal carbonization (MIHTC) play an important role on the hydrothermal chars (hydrochar) yield. The effect of reaction temperature, reaction time, particle size and biomass to water ratio was optimized for hydrochar yield by modeling using the central composite design (CCD). Further, the rice straw and hydrochar at optimum conditions have been characterized for energy, chemical, structural and thermal properties.
View Article and Find Full Text PDFThe process parameters of microwave hydrothermal carbonization (MHTC) have significant effect on yield of hydrochar. This study discusses the effect of process parameters on hydrochar yield produced from MHTC of rice husk. Results revealed that, over the ranges tested, a lower temperature, lower reaction time, lower biomass to water ratio, and higher particle size produce more hydrochar.
View Article and Find Full Text PDF