The use of flow cytometry to enumerate microorganisms is gaining traction over the traditional plate count technique on the basis of superior accuracy, precision and time-to-result. Here, we assessed the suitability of live/dead flow cytometry for the enumeration of mixed populations of probiotic bacteria (L. acidophilus, L.
View Article and Find Full Text PDFIntroduction: As of 2015, as part of the implementation of the Welsh Government primary care plan and primary care clusters, the Welsh Government has encouraged non-medical healthcare professionals working in primary care to train as independent prescribers (IPs).
Objectives: This research aimed to identify the number of NMIPs in primary care in Wales and describe their prescribing trend of items between 2011 and 2018, in order to compare their prescribing pattern before and after the implementation of primary care clusters for Wales.
Design: Retrospective secondary data analysis and interrupted time series analysis in order to compare prescribing by non-medical independent prescribers (NMIPs) preimplementation and postimplementation of primary care clusters across Wales.
The crystal structures of antagonist and agonist complexes of isolated β(2) and β(1) adrenoceptors have recently been supplemented by antagonist structures of M(2) and M(3) muscarinic acetylcholine receptors. Importantly, a structure of an agonist-ligated β(2) adrenoceptor complexed with its cognate G protein has provided the first view of a ternary complex representing the transition state in agonist-mediated G protein activation. This review interprets these G-protein-coupled receptor (GPCR) structures through the focus provided by extensive mutagenesis studies on muscarinic receptors, revealing an activation mechanism that is both modular and dynamic.
View Article and Find Full Text PDFLocomotion requires coordinated motor activity throughout an animal's body. In both vertebrates and invertebrates, chains of coupled central pattern generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C.
View Article and Find Full Text PDFWe have used alanine-scanning mutagenesis followed by functional expression and molecular modeling to analyze the roles of the 14 residues, Asn422 to Cys435, C-terminal to transmembrane (TM) helix 7 of the M(1) muscarinic acetylcholine receptor. The results suggest that they form an eighth (H8) helix, associated with the cytoplasmic surface of the cell membrane in the active state of the receptor. We suggest that the amide side chain of Asn422 may act as a cap to the C terminus of TM7, stabilizing its junction with H8, whereas the side chain of Phe429 may restrict the relative movements of H8 and the C terminus of TM7 in the inactive ground state of the receptor.
View Article and Find Full Text PDFThe focus of this review paper is factors affecting data interpretation in ligand binding assays under equilibrium conditions. Protocols for determining K(d) (the equilibrium dissociation constant) and K(dA) (the equilibrium inhibitor constant) for receptor ligands are discussed. The basic theory describing the interaction of a radiotracer and an unlabelled competitor ligand with a receptor is developed.
View Article and Find Full Text PDFPoint mutations and molecular modeling have been used to study the activation of the M(1) muscarinic acetylcholine receptor (mAChR) by the functionally selective agonists 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42), and 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1), comparing them with N-desmethylclozapine (NDMC) and acetylcholine (ACh). Unlike NDMC and ACh, the activities of AC-42 and 77-LH-28-1 were undiminished by mutations of Tyr404 and Cys407 (transmembrane helix 7), although they were reduced by mutations of Tyr408. Signaling by AC-42, 77-LH-28-1, and NDMC was reduced by L102A and abolished by D105E, suggesting that all three may interact with transmembrane helix 3 at or near the binding site Asp105 to activate the M(1) mAChR.
View Article and Find Full Text PDFAlanine substitution mutagenesis has been used to investigate residues that make up the roof and floor of the muscarinic binding pocket and regulate ligand access. We mutated the amino acids in the second extracellular loop of the M1 muscarinic acetylcholine receptor that are homologous to the cis-retinal contact residues in rhodopsin, the disulfide-bonded Cys178 and Cys98 that anchor the loop to transmembrane helix 3, the adjoining acidic residue Asp99, and the conserved aromatic residues Phe197 and Trp378 in the transmembrane domain. The effects on ligand binding, kinetics, and receptor function suggest that the second extracellular loop does not provide primary contacts for orthosteric ligands, including acetylcholine, but that it does contribute to microdomains that are important for the conformational changes that accompany receptor activation.
View Article and Find Full Text PDFAla substitution scanning mutagenesis has been used to probe the functional role of amino acids in transmembrane (TM) domain 2 of the M1 muscarinic acetylcholine receptor, and of the highly conserved Asn43 in TM1. The mutation of Asn43, Asn61, and Leu64 caused an enhanced ACh affinity phenotype. Interpreted using a rhodopsin-based homology model, these results suggest the presence of a network of specific contacts between this group of residues and Pro415 and Tyr418 in the highly conserved NPXXY motif in TM7 that exhibit a similar mutagenic phenotype.
View Article and Find Full Text PDFGPCRs (G-protein-coupled receptors) such as the M(1) muscarinic receptor have so far proved recalcitrant to direct structure determination. Nevertheless systematic mutagenesis, particularly alanine scanning, has advanced our understanding of their structure-function relationships. GPCRs exhibit multiple conformational states with different affinities for and abilities to activate their cognate G-proteins.
View Article and Find Full Text PDFPaediatr Perinat Epidemiol
March 2007
During pregnancy, asthma-related alterations in placental function and the maternal immune system, and reduced growth affecting female but not male fetuses have been reported in a study of selected Australian women. The objective of this study was to evaluate the effect of asthma management, declared during pregnancy, on birthweight and neonatal outcome at an inner-city hospital in England. Between June 2001 and December 2003, women at antenatal clinics were questioned about asthma (n = 10 983).
View Article and Find Full Text PDFNeutron diffraction augmented with hydrogen isotope substitution has been used to examine the water structure around the acetylcholine molecular ion in aqueous solution. It is shown that the nearest-neighbor water molecules in the region around the trimethylammonium headgroup are located either in a ring around the central nitrogen atom or between the carbon atoms, forming a sheath around the onium group. Moreover the water molecules in this cavity do not bond to the onium group but rather form hydrogen bonds with water molecules in the surrounding aqueous environment.
View Article and Find Full Text PDFRecept Channels
April 2004
Following the solution of the structure of bovine rhodopsin by X-ray crystallography, it has been possible to build an improved homology model of the M(1) muscarinic acetylcholine receptor. This has been used to interpret the outcome of an extensive series of scanning and point mutagenesis studies on the transmembrane domain of the receptor. Potential intramolecular interactions enhancing the stability of the protein fold have been identified.
View Article and Find Full Text PDFA homology model of the M(1) muscarinic acetylcholine receptor, based on the X-ray structure of bovine rhodopsin, has been used to interpret the results of scanning and point mutagenesis studies on the receptor's transmembrane (TM) domain. Potential intramolecular interactions that are important for the stability of the protein fold have been identified. The residues contributing to the binding site for the antagonist, N -methyl scopolamine, and the agonist, acetylcholine, have been mapped.
View Article and Find Full Text PDFThe X-ray structure of the photoreceptor rhodopsin has provided the first atomic-resolution structure of a seven-transmembrane (7-TM) G-protein-coupled receptor. This has provided an improved template for interpreting the huge body of structure--activity, mutagenesis and affinity labelling data available for related 7-TM receptors, such as muscarinic acetylcholine receptors. Ligand contacts, and the intramolecular interactions that stabilize the ground state structure, can be identified with some degree of confidence.
View Article and Find Full Text PDFActivation of the muscarinic acetylcholine receptors requires agonist binding followed by a conformational change, but the ligand binding and conformation-switching residues have not been completely identified. Systematic alanine-scanning mutagenesis has been used to assess residues 142-164 in transmembrane helix 4 and 402-421 in transmembrane helix 7 of the M(1) muscarinic acetylcholine receptor. Several inward-facing amino acid side chains in the exofacial parts of transmembrane helices 4 and 7 contribute to acetylcholine binding.
View Article and Find Full Text PDFThe recently-determined structure of rhodopsin has provided a suitable basis for modeling the three-dimensional structure of the M1 muscarinic acetylcholine receptor. Using this as a framework for interpreting mutagenesis studies, we have been able to suggest most of the contacts which the receptor makes with acetylcholine and many of the intramolecular contacts which are important for the ground-state structure of the receptor. It is possible to outline a mechanism of G-protein interaction.
View Article and Find Full Text PDFThe exofacial part of transmembrane domain 5 (TMD 5) of the cationic amine-binding subclass of 7-transmembrane receptors is thought to be important in binding the side chain of the agonist. Residues Ile-188 through Ala-196 in TMD 5 of the M(1) muscarinic acetylcholine receptor (mAChR) have been studied by Cys- and Ala-scanning mutagenesis. The results are consistent with a helical conformation for this sequence.
View Article and Find Full Text PDFActivation of the rhodopsin-like 7-transmembrane (7-TM) receptors requires switching interhelical constraints that stabilize the inactive state to a new set of contacts in the activated state, which binds the cognate G-protein. The free energy to drive this is provided by agonist binding, which has higher affinity to the active than to the inactive conformation. We have sought specific interhelical constraint contacts, using the M(1) muscarinic acetylcholine receptor as a model.
View Article and Find Full Text PDFMuscarinic acetylcholine receptors (mAChRs) are known to be involved in learning and memory, but the molecular basis of their involvement is not well understood. The availability of new and specific biochemical tools has revealed a crucial role for the mitogen-activated protein kinase (MAPK) family in learning and memory. Here, we examine the link between mAChRs and MAPK in neurons.
View Article and Find Full Text PDFTransmembrane domain 6 of the muscarinic acetylcholine (ACh) receptors is important in ligand binding and in the conformational transitions of the receptor but the roles of individual residues are poorly understood. We have carried out a systematic alanine-scanning mutagenesis study on residues Tyr381 to Val387 within the binding domain of the M(1) muscarinic ACh receptor. The seven mutations were then analyzed to define the effects on receptor expression, agonist and antagonist binding, and signaling efficacy.
View Article and Find Full Text PDFThe rhodopsin-like superfamily of 7-transmembrane receptors is the largest class of signalling molecules in the mammalian genome. Recently, a combination of mutagenesis, biophysical and modelling studies have suggested a credible model for the alpha-carbon backbone in the transmembrane region of the 7-transmembrane receptors, and have started to reveal the structural basis of the conformational switch from the inactive to the active state. A key feature may be the replacement of a network of radial constraints, centred on transmembrane helix three, which stabilise the inactive ground state of the receptor by a new set of axial interactions which help to stabilise the activated state.
View Article and Find Full Text PDFAlanine-scanning mutagenesis has been applied to residues 100-121 in transmembrane domain 3 of the M1 muscarinic acetylcholine receptor. This study complements a previous investigation of the triad Asp122-Arg123-Tyr124 (Lu, Z-L., Curtis, C.
View Article and Find Full Text PDF