Some marketed antibiotics can cause mitochondria dysfunction via inhibition of the mitochondrial translation process. There is great interest in exploiting such effects within a cancer setting. To enhance accumulation of antibiotics within the mitochondria of cancer cells, and therefore delivery of a greater potency payload, a mitochondrial targeting group in the form of a triphenylphosphonium (TPP) cation was appended via an alkyl chain length consisting of 7 to 11 carbons to the ribosomal antibiotics azithromycin and doxycycline.
View Article and Find Full Text PDFCell-cell fusion is a normal biological process playing essential roles in organ formation and tissue differentiation, repair and regeneration. Through cell fusion somatic cells undergo rapid nuclear reprogramming and epigenetic modifications to form hybrid cells with new genetic and phenotypic properties at a rate exceeding that achievable by random mutations. Factors that stimulate cell fusion are inflammation and hypoxia.
View Article and Find Full Text PDFPresent-day drug therapies provide clear beneficial effects as many diseases can be driven into remission and the symptoms of others can be efficiently managed; however, the success of many drugs is limited due to both patient non-compliance and adverse off-target or toxicity-induced effects. There is emerging evidence that many of these side effects are caused by drug-induced impairment of mitochondrial function and eventual mitochondrial dysfunction. It is imperative to understand how and why drug-induced side effects occur and how mitochondrial function is affected.
View Article and Find Full Text PDFReceptor tyrosine kinases (RTKs) and integrins cooperate to stimulate cell migration and tumour metastasis. Here we report that an integrin influences signalling of an RTK, c-Met, from inside the cell, to promote anchorage-independent cell survival. Thus, c-Met and β1-integrin co-internalize and become progressively recruited on LC3B-positive 'autophagy-related endomembranes' (ARE).
View Article and Find Full Text PDFHere, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared to attached monolayer cells grown in parallel. This allowed us to identify a subset of proteins that were selectively over-expressed in mammospheres, relative to epithelial monolayers.
View Article and Find Full Text PDFCAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution.
View Article and Find Full Text PDFN-cadherin and HER2/neu were found to be co-expressed in invasive breast carcinomas. To test the contribution of N-cadherin and HER2 in mammary tumor metastasis, we targeted N-cadherin expression in the mammary epithelium of the MMTV-Neu mouse. In the context of ErbB2/Neu, N-cadherin stimulated carcinoma cell invasion, proliferation and metastasis.
View Article and Find Full Text PDFThe role of PPARγ in cancer therapy is controversial, with studies showing either pro-tumorigenic or antineoplastic effects. This debate is very clinically relevant, because PPARγ agonists are used as antidiabetic drugs. Here, we evaluated if the effects of PPARγ on tumorigenesis are determined by the cell type in which PPARγ is activated.
View Article and Find Full Text PDFCigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored.
View Article and Find Full Text PDFHere, we provide the necessary proof of concept, that it is possible to metabolically create a non-permissive or "hostile" stromal microenvironment, which actively prevents tumor engraftment in vivo. We developed a novel genetically engineered fibroblast cell line that completely prevents tumor formation in mice, with a 100% protection rate. No host side effects were apparent.
View Article and Find Full Text PDFLittle is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts.
View Article and Find Full Text PDFMetformin is a well-established diabetes drug that prevents the onset of most types of human cancers in diabetic patients, especially by targeting cancer stem cells. Metformin exerts its protective effects by functioning as a weak "mitochondrial poison," as it acts as a complex I inhibitor and prevents oxidative mitochondrial metabolism (OXPHOS). Thus, mitochondrial metabolism must play an essential role in promoting tumor growth.
View Article and Find Full Text PDFHere, we present new genetic and morphological evidence that human tumors consist of two distinct metabolic compartments. First, re-analysis of genome-wide transcriptional profiling data revealed that > 95 gene transcripts associated with mitochondrial biogenesis and/or mitochondrial translation were significantly elevated in human breast cancer cells, as compared with adjacent stromal tissue. Remarkably, nearly 40 of these upregulated gene transcripts were mitochondrial ribosomal proteins (MRPs), functionally associated with mitochondrial translation of protein components of the OXPHOS complex.
View Article and Find Full Text PDFCell proliferation and invasion are critical for malignant progression, yet how these processes relate to each other and whether they regulate one another during metastasis is unknown. We show that invasiveness of breast cancer cells is associated with growth arrest due to p21CIP1 upregulation. Knockdown of p21CIP1 increases cell proliferation and suppresses invasion.
View Article and Find Full Text PDFThe analysis of cancer cell behavior in the primary tumor in living animals provides an opportunity to explore the process of invasion and intravasation in the complex microenvironment that is present in vivo. In this chapter, we describe the methods that we have developed for performing intravital imaging of mammary tumors. We provide procedures for generating tumors through injection of tumor cell lines, and multiphoton imaging using a skin-flap tumor dissection and a mammary imaging window.
View Article and Find Full Text PDFTwo-photon microscopy has advanced fluorescence imaging of cellular processes in living animals. Fluorescent proteins in the blue-green wavelength range are widely used in two-photon microscopy; however, the use of red fluorescent proteins is limited by the low power output of Ti-Sapphire lasers above 1,000 nm. To overcome this limitation we have developed two red fluorescent proteins, LSS-mKate1 and LSS-mKate2, which possess large Stokes shifts with excitation/emission maxima at 463/624 and 460/605 nm, respectively.
View Article and Find Full Text PDFThe mammary epithelium is thought to be stabilized by cell-cell adhesion mediated mainly by E-cadherin (E-cad). Here, we show that another cadherin, retinal cadherin (R-cad), is critical for maintenance of the epithelial phenotype. R-cad is expressed in nontransformed mammary epithelium but absent from tumorigenic cell lines.
View Article and Find Full Text PDFInfection with the parasite Trypanosoma cruzi causes Chagas disease. In this study we demonstrated that there was an increase in cyclin D1 expression in T. cruzi (Tulahuen strain)-infected myoblasts.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
September 2007
The cadherin family of adhesion molecules regulates cell-cell interactions during development and in tissues. The prototypical cadherin, E-cadherin, is responsible for maintaining interactions of epithelial cells and is frequently downregulated during tumor progression. N-cadherin, normally found in fibroblasts and neural cells, can be upregulated during tumor progression and can increase the invasiveness of tumor cells.
View Article and Find Full Text PDFN-cadherin is up-regulated in aggressive breast carcinomas, but its mechanism of action in vivo remains unknown. Transgenic mice coexpressing N-cadherin and polyomavirus middle T antigen (PyVmT) in the mammary epithelium displayed increased pulmonary metastasis, with no differences in tumor onset or growth relative to control PyVmT mice. PyVmT-N-cadherin tumors contained higher levels of phosphorylated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) than PyVmT controls, and phosphorylated ERK staining was further increased in pulmonary metastases.
View Article and Find Full Text PDFExpression of the cyclin-dependent kinase (Cdk) inhibitor (p27(Kip1)) is frequently reduced in human tumors, often correlating with poor prognosis. p27(Kip1) functions as a haploinsufficient tumor suppressor; however, the mechanism by which one allele of p27(Kip1) regulates oncogenic signaling in vivo is not well understood. We therefore investigated the mechanisms by which p27(Kip1) inhibits mammary tumor onset.
View Article and Find Full Text PDFConstitutive beta-catenin/Tcf activity, the primary transforming events in colorectal carcinoma, occurs through induction of the Wnt pathway or APC gene mutations that cause familial adenomatous polyposis. Mice carrying Apc mutations in their germ line (ApcMin) develop intestinal adenomas. Here, the crossing of ApcMin with cyclin D1-/- mice reduced the intestinal tumor number in animals genetically heterozygous or nullizygous for cyclin D1.
View Article and Find Full Text PDFThe cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation.
View Article and Find Full Text PDF