Publications by authors named "Hulet R"

The Tomonaga-Luttinger liquid (TLL) theory describes the low-energy excitations of strongly correlated one-dimensional (1D) fermions. In the past years, a number of studies have provided a detailed understanding of this universality class. More recently, theoretical investigations that go beyond the standard low-temperature, linear-response TLL regime have been developed.

View Article and Find Full Text PDF

Ultracold atoms confined to periodic potentials have proven to be a powerful tool for quantum simulation of complex many-body systems. We confine fermions to one dimension to realize the Tomonaga-Luttinger liquid model, which describes the highly collective nature of their low-energy excitations. We use Bragg spectroscopy to directly excite either the spin or charge waves for various strengths of repulsive interaction.

View Article and Find Full Text PDF

We study collisional loss of a quasi-one-dimensional spin-polarized Fermi gas near a p-wave Feshbach resonance in ultracold ^{6}Li atoms. We measure the location of the p-wave resonance in quasi-1D and observe a confinement-induced shift and broadening. We find that the three-body loss coefficient L_{3} as a function of the quasi-1D confinement has little dependence on confinement strength.

View Article and Find Full Text PDF

At low temperature, collective excitations of one-dimensional (1D) interacting fermions exhibit spin-charge separation, a unique feature predicted by the Tomonaga-Luttinger liquid (TLL) theory, but a rigorous understanding remains challenging. Using the thermodynamic Bethe ansatz (TBA) formalism, we analytically derive universal properties of a 1D repulsive spin-1/2 Fermi gas with arbitrary interaction strength. We show how spin-charge separation emerges from the exact TBA formalism, and how it is disrupted by the interplay between the two degrees of freedom that brings us beyond the TLL paradigm.

View Article and Find Full Text PDF

We report the creation of quasi-1D excited matter-wave solitons, "breathers," by quenching the strength of the interactions in a Bose-Einstein condensate with attractive interactions. We characterize the resulting breathing dynamics and quantify the effects of the aspect ratio of the confining potential, the strength of the quench, and the proximity of the 1D-3D crossover for the two-soliton breather. Furthermore, we demonstrate the complex dynamics of a three-soliton breather created by a stronger interaction quench.

View Article and Find Full Text PDF

We study quantum fluctuations of macroscopic parameters of a nonlinear Schrödinger breather-a nonlinear superposition of two solitons, which can be created by the application of a fourfold quench of the scattering length to the fundamental soliton in a self-attractive quasi-one-dimensional Bose gas. The fluctuations are analyzed in the framework of the Bogoliubov approach in the limit of a large number of atoms N, using two models of the vacuum state: white noise and correlated noise. The latter model, closer to the ab initio setting by construction, leads to a reasonable agreement, within 20% accuracy, with fluctuations of the relative velocity of constituent solitons obtained from the exact Bethe-ansatz results [Phys.

View Article and Find Full Text PDF

Lithium is an important element in atomic quantum gas experiments because its interactions are highly tunable due to broad Feshbach resonances and zero-crossings and because it has two stable isotopes: Li, a fermion, and Li, a boson. Although lithium has special value for these reasons, it also presents experimental challenges. In this article, we review some of the methods that have been developed or adapted to confront these challenges, including beam and vapor sources, Zeeman slowers, sub-Doppler laser cooling, laser sources at 671 nm, and all-optical methods for trapping and cooling.

View Article and Find Full Text PDF

We present measurements of the dynamical structure factor S(q,ω) of an interacting one-dimensional Fermi gas for small excitation energies. We use the two lowest hyperfine levels of the ^{6}Li atom to form a pseudospin-1/2 system whose s-wave interactions are tunable via a Feshbach resonance. The atoms are confined to one dimension by a two-dimensional optical lattice.

View Article and Find Full Text PDF

We use the ab initio Bethe ansatz dynamics to predict the dissociation of one-dimensional cold-atom breathers that are created by a quench from a fundamental soliton. We find that the dissociation is a robust quantum many-body effect, while in the mean-field (MF) limit the dissociation is forbidden by the integrability of the underlying nonlinear Schrödinger equation. The analysis demonstrates the possibility to observe quantum many-body effects without leaving the MF range of experimental parameters.

View Article and Find Full Text PDF

Nonlinear systems can exhibit a rich set of dynamics that are inherently sensitive to their initial conditions. One such example is modulational instability, which is believed to be one of the most prevalent instabilities in nature. By exploiting a shallow zero-crossing of a Feshbach resonance, we characterize modulational instability and its role in the formation of matter-wave soliton trains from a Bose-Einstein condensate.

View Article and Find Full Text PDF

We have characterized the one-dimensional (1D) to three-dimensional (3D) crossover of a two-component spin-imbalanced Fermi gas of ^{6}Li atoms in a 2D optical lattice by varying the lattice tunneling and the interactions. The gas phase separates, and we detect the phase boundaries using in situ imaging of the inhomogeneous density profiles. The locations of the phases are inverted in 1D as compared to 3D, thus providing a clear signature of the crossover.

View Article and Find Full Text PDF

Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases.

View Article and Find Full Text PDF

We characterize the Mott insulating regime of a repulsively interacting Fermi gas of ultracold atoms in a three-dimensional optical lattice. We use in situ imaging to extract the central density of the gas and to determine its local compressibility. For intermediate to strong interactions, we observe the emergence of a plateau in the density as a function of atom number, and a reduction of the compressibility at a density of one atom per site, indicating the formation of a Mott insulator.

View Article and Find Full Text PDF

Ultracold atoms in optical lattices have great potential to contribute to a better understanding of some of the most important issues in many-body physics, such as high-temperature superconductivity. The Hubbard model--a simplified representation of fermions moving on a periodic lattice--is thought to describe the essential details of copper oxide superconductivity. This model describes many of the features shared by the copper oxides, including an interaction-driven Mott insulating state and an antiferromagnetic (AFM) state.

View Article and Find Full Text PDF

As a result of the widespread use of antibiotics in large-scale U.S. poultry production, a significant proportion of Salmonella strains recovered from conventional poultry farms and retail poultry products express antibiotic resistance.

View Article and Find Full Text PDF

We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary.

View Article and Find Full Text PDF

Background: In U.S. conventional poultry production, antimicrobials are used for therapeutic, prophylactic, and nontherapeutic purposes.

View Article and Find Full Text PDF

High eggshell temperatures (EST; ≥38.9°C) during the second half of incubation are known to decrease the body and organ development of broiler hatchlings. In particular, relative heart weights are decreased by a high EST, and this may increase the incidence of metabolic disorders that are associated with cardiovascular development, such as ascites.

View Article and Find Full Text PDF

This study evaluated the effects of elevated incubation temperature on posthatch nutrient transporter gene expression, integrity of the intestinal epithelium, organ development, and performance in Ross 308 broiler chickens. Ross × Ross 308 fertile eggs (n = 900) were incubated at different eggshell temperatures during development. From embryonic day (ED) 1 to ED12, all eggs were incubated at 37.

View Article and Find Full Text PDF

Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) proposed an exotic pairing mechanism in which magnetism is accommodated by the formation of pairs with finite momentum.

View Article and Find Full Text PDF

Under certain circumstances, three or more interacting particles may form bound states. Although the general few-body problem is not analytically solvable, the so-called Efimov trimers appear for a system of three particles with resonant two-body interactions. The binding energies of these trimers are predicted to be universally connected to each other, independent of the microscopic details of the interaction.

View Article and Find Full Text PDF

An experiment was conducted to compare the responses of young broiler chickens to corn-soybean meal diets supplemented with flaxseed or camelina meal versus a corn-soybean meal control and the factorial effect of 150 mg/kg of Cu supplementation on performance and processing yield. A randomized complete block design with a 2 x 3 factorial arrangement was used with 7 replicates from hatch to 21 d of age (n = 294; 7 chicks per replicate). Body weight of birds fed 10% camelina meal or 10% flaxseed was significantly reduced compared with the control birds.

View Article and Find Full Text PDF

We use a Feshbach resonance to tune the scattering length a of a Bose-Einstein condensate of 7Li in the |F=1,mF=1> state. Using the spatial extent of the trapped condensate, we extract a over a range spanning 7 decades from small attractive interactions to extremely strong repulsive interactions. The shallow zero crossing in the wing of the Feshbach resonance enables the determination of a as small as 0.

View Article and Find Full Text PDF

We measure the effect of a magnetic Feshbach resonance (FR) on the rate and light-induced frequency shift of a photoassociation resonance in ultracold 7Li. The photoassociation-induced loss-rate coefficient K_{p} depends strongly on magnetic field, varying by more than a factor of 10;{4} for fields near the FR. At sufficiently high laser intensities, K_{p} for a thermal gas decreases with increasing intensity, while saturation is observed for the first time in a Bose-Einstein condensate.

View Article and Find Full Text PDF

This study sought to evaluate the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)), the gas of greatest environmental concern to the poultry industry. Four plant species (Norway spruce, Spike hybrid poplar, Streamco willow, and hybrid willow) were planted on eight commercial farms from 2003 to 2004. Because temperature (T) can be a stressor for trees, T was monitored in 2005 with data loggers among the trees in front of the exhaust fans (11.

View Article and Find Full Text PDF