Arthritis Rheumatol
March 2019
Objective: Clinical trials of the anti-interleukin-17A (anti-IL-17A) antibody secukinumab have demonstrated a crucial role of the cytokine IL-17A in the pathogenesis of spondyloarthritis (SpA); however, its cellular source in this condition remains a matter of controversy. Group 3 innate lymphoid cells (ILC3s) have been recently identified as potent producers of proinflammatory cytokines, including IL-17A and IL-22, in a number of different tissues. This study was undertaken to characterize the presence and composition of ILCs, and investigate whether these cells are an important source of IL-17A, in the synovial tissue (ST) of patients with SpA.
View Article and Find Full Text PDFBackground: Infection by common viruses has long been discussed in the aetiology of a number of autoimmune diseases, including rheumatoid arthritis (RA). However, studies investigating this hypothesis in RA show conflicting results. These studies often lack well-matched control populations, and many do not include data on autoantibodies, genetic risk factors and other environmental factors, which are known to contribute to disease only in subgroups of patients.
View Article and Find Full Text PDFSpondyloarthritis is the second most common form of chronic inflammatory arthritis and a unique hallmark of the disease is pathologic new bone formation. Several cytokine pathways have been genetically associated with ankylosing spondylitis (AS), the prototypic subtype of SpA, and additional evidence from human and animal studies support a role of these pathways in the disease. TNF has a key role in SpA as blockade significantly reduces inflammation and destruction, however the treatment does not halt new bone formation.
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) are effectors of innate immunity and regulators of tissue modeling. Recently identified ILC populations have a cytokine expression pattern that resembles that of the helper T cell subsets T(H)2, T(H)17 and T(H)22. Here we describe a distinct ILC subset similar to T(H)1 cells, which we call 'ILC1'.
View Article and Find Full Text PDFThe nuclear protein high mobility group box protein 1 (HMGB1) promotes inflammation upon extracellular release. HMGB1 induces proinflammatory cytokine production in macrophages via Toll-like receptor (TLR)-4 signaling in a redox-dependent fashion. Independent of its redox state and endogenous cytokine-inducing ability, HMGB1 can form highly immunostimulatory complexes by interaction with certain proinflammatory mediators.
View Article and Find Full Text PDFIntroduction: In addition to its direct proinflammatory activity, extracellular high mobility group box protein 1 (HMGB1) can strongly enhance the cytokine response evoked by other proinflammatory molecules, such as lipopolysaccharide (LPS), CpG-DNA and IL-1β, through the formation of complexes. Extracellular HMGB1 is abundant in arthritic joint tissue where it is suggested to promote inflammation as intra-articular injections of HMGB1 induce synovitis in mice and HMGB1 neutralizing therapy suppresses development of experimental arthritis. The aim of this study was to determine whether HMGB1 in complex with LPS, interleukin (IL)-1α or IL-1β has enhancing effects on the production of proinflammatory mediators by rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF).
View Article and Find Full Text PDFDuring infection, vertebrates develop "sickness syndrome," characterized by fever, anorexia, behavioral withdrawal, acute-phase protein responses, and inflammation. These pathophysiological responses are mediated by cytokines, including TNF and IL-1, released during the innate immune response to invasion. Even in the absence of infection, qualitatively similar physiological syndromes occur following sterile injury, ischemia reperfusion, crush injury, and autoimmune-mediated tissue damage.
View Article and Find Full Text PDFThe nuclear protein HMGB1 has previously been demonstrated to act as an alarmin and to promote inflammation upon extracellular release, yet its mode of action is still not well defined. Access to highly purified HMGB1 preparations from prokaryotic and eukaryotic sources enabled studies of activation of human PBMC or synovial fibroblast cultures in response to HMGB1 alone or after binding to cofactors. HMGB1 on its own could not induce detectable IL-6 production.
View Article and Find Full Text PDFMaedi-visna virus (MVV) is a lentivirus of sheep causing chronic inflammatory disease of the lungs (maedi) and the nervous system (visna). We have previously shown that a duplicated sequence in the long terminal repeat (LTR) of MVV is a determinant of cell tropism. Here, we demonstrate that deletion of a CAAAT sequence from either one of the repeats resulted in poor virus growth in sheep choroid plexus cells.
View Article and Find Full Text PDF