The paraoxonase () gene family (including PON1, PON2, and PON3), is known for its anti-oxidative and anti-inflammatory properties, protecting against metabolic diseases such as obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, the influence of common and rare variants on both conditions was investigated. A total of 507 healthy weight individuals and 744 patients with obesity including 433 with histological liver assessment, were sequenced with single-molecule molecular inversion probes (smMIPs), allowing the identification of genetic contributions to obesity and MASLD-related liver features.
View Article and Find Full Text PDFContext: Osteopathia striata with cranial sclerosis (OSCS) is a rare bone disorder with X-linked dominant inheritance, characterized by a generalized hyperostosis in the skull and long bones and typical metaphyseal striations in the long bones. So far, loss-of-function variants in AMER1 (also known as WTX or FAM123B), encoding the APC membrane recruitment protein 1 (AMER1), have been described as the only molecular cause for OSCS. AMER1 promotes the degradation of β-catenin via AXIN stabilization, acting as a negative regulator of the WNT/β-catenin signaling pathway, a central pathway in bone formation.
View Article and Find Full Text PDFPathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost) with our p.
View Article and Find Full Text PDFIntroduction: Spondylocostal dysostosis (SCD) is characterized by multiple vertebral abnormalities associated with abnormalities of the ribs. Five genes causative for the disease have been identified. These include (OMIM *602768), (OMIM #608681), (OMIM #609813), (OMIM *602427), and (OMIM *608059).
View Article and Find Full Text PDFRenal osteodystrophy (ROD) is a complex and serious complication of chronic kidney disease (CKD), a major global health problem caused by loss of renal function. Currently, the gold standard to accurately diagnose ROD is based on quantitative histomorphometric analysis of trabecular bone. Although this analysis encompasses the evaluation of osteoblast and osteoclast number/activity, tfigurehe interest in osteocytes remains almost nihil.
View Article and Find Full Text PDFRecently, it was reported that heterozygous PCSK1 variants, causing partial PC1/3 deficiency, result in a significant increased risk for obesity. This effect was almost exclusively generated by the rare p.Y181H (rs145592525, GRCh38.
View Article and Find Full Text PDFBackground: Cleidocranial dysplasia (CCD) is a rare skeletal dysplasia with significant clinical variability. Patients with CCD typically present with delayed closure of fontanels and cranial sutures, dental anomalies, clavicular hypoplasia or aplasia and short stature. Runt-related transcription factor 2 ( is currently the only known disease-causing gene for CCD, but several studies have suggested locus heterogeneity.
View Article and Find Full Text PDFMonogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology.
View Article and Find Full Text PDFThe clinical and radiological variability seen in different forms of osteopetrosis, all due to impaired osteoclastic bone resorption, reflect many causal genes. Both defective differentiation of osteoclasts from hematopoietic stem cells as well as disturbed functioning of osteoclasts can be the underlying pathogenic mechanism. Pathogenic variants in PLEKHM1 and SNX10 can be classified among the latter as they impair vesicular transport within the osteoclast and therefore result in the absence of a ruffled border.
View Article and Find Full Text PDFBackground: Camurati-Engelmann disease (CED) is a rare bone dysplasia characterized by diffuse diaphyseal osteosclerosis. Skull base involvement in CED can result in hypopituitarism but is seldom reported. Our objective was to report a patient with acquired hypopituitarism due to CED and assess the management challenges.
View Article and Find Full Text PDFContext: Natriuretic peptide receptor-C (NPR-C, encoded by ) belongs to a family of cell membrane-integral proteins implicated in various physiological processes, including longitudinal bone growth. NPR-C acts as a clearance receptor of natriuretic peptides, including C-type natriuretic peptide (CNP), that stimulate the cGMP-forming guanylyl cyclase-coupled receptors NPR-A and NPR-B. Pathogenic variants in , , and may cause a tall stature phenotype associated with macrodactyly of the halluces and epiphyseal dysplasia.
View Article and Find Full Text PDFSclerosteosis is a high bone mass disorder, caused by pathogenic variants in the genes encoding sclerostin or LRP4. Both proteins form a complex that strongly inhibits canonical WNT signaling activity, a pathway of major importance in bone formation. So far, all reported disease-causing variants are located in the third β-propeller domain of LRP4, which is essential for the interaction with sclerostin.
View Article and Find Full Text PDFThe availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2022
Genetic disorders of the skeleton encompass a diverse group of bone diseases differing in clinical characteristics, severity, incidence and molecular etiology. Of particular interest are the monogenic rare bone mass disorders, with the underlying genetic defect contributing to either low or high bone mass phenotype. Extensive, deep phenotyping coupled with high-throughput, cost-effective genotyping is crucial in the characterization and diagnosis of affected individuals.
View Article and Find Full Text PDFBackground: The multifactorial nature of non-alcoholic fatty liver disease cannot be explained solely by genetic factors. Recent evidence revealed that DNA methylation changes take place at proximal promoters within susceptibility genes. This emphasizes the need for integrating multiple data types to provide a better understanding of the disease's pathogenesis.
View Article and Find Full Text PDFPaget's disease of bone (PDB) is a common bone disorder characterized by focal lesions caused by increased bone turnover. Monogenic forms of PDB and PDB-related phenotypes as well as genome-wide association studies strongly support the involvement of genetic variation in components of the NF-κB signaling pathway in the pathogenesis of PDB. In this study, we performed a panel-based mutation screening of 52 genes.
View Article and Find Full Text PDFThe gene encodes an extracellular inhibitor of the Wnt pathway with an important role in bone tissue development, bone homeostasis, and different critical aspects of bone biology. Several BMD genome-wide association studies (GWASs) have consistently found association with SNPs in the genomic region. For these reasons, it is important to assess the functionality of coding and regulatory variants in the gene.
View Article and Find Full Text PDFWe report a case of a young male patient with clinical signs of dyskeratosis congenita who presented with multiple bilateral low-traumatic hip fractures. Whole exome sequencing (WES) showed a previously unreported mutation in the poly(A)-specific ribonuclease (PARN) gene. Zoledronic acid 5 mg over 3 years was effective at preventing further fractures.
View Article and Find Full Text PDFGenome-wide copy number surveys associated chromosome 11q11 with obesity. As this is an olfactory receptor-rich region, we hypothesize that genetic variation in olfactory receptor genes might be implicated in the pathogenesis of obesity. Multiplex Amplicon Quantification analysis was applied to screen for copy number variants at chromosome 11q11 in 627 patients with obesity and 330 healthy-weight individuals.
View Article and Find Full Text PDF