This article is concerned with the problem of planning optimal maneuver trajectories and guiding the mobile robot toward target positions in uncertain environments for exploration purposes. A hierarchical deep learning-based control framework is proposed which consists of an upper level motion planning layer and a lower level waypoint tracking layer. In the motion planning phase, a recurrent deep neural network (RDNN)-based algorithm is adopted to predict the optimal maneuver profiles for the mobile robot.
View Article and Find Full Text PDFIEEE Trans Image Process
May 2022
Given a photo of a subject, ability to generate a caricature image that captures distinct characteristics of the subject but with certain exaggeration of their prominent features is of fundamental importance to image processing and facial recognition. There are two main challenges in this task: shape exaggeration and style transfer. The former morphs and exaggerates key facial features of the subject, while the latter generates caricature images in a certain artistic style.
View Article and Find Full Text PDFCassava brown streak disease (CBSD) is an emerging viral disease that can greatly reduce cassava productivity, while causing only mild aerial symptoms that develop late in infection. Early detection of CBSD enables better crop management and intervention. Current techniques require laboratory equipment and are labour intensive and often inaccurate.
View Article and Find Full Text PDFIEEE Trans Cybern
February 2022
Canonical correlation analysis (CCA) is a typical statistical model used to analyze the correlation components between different view representations of the same objects. When the label information is available with the data representations, CCA can be extended to its discriminative counterparts by incorporating supervision in the analysis. Although most discriminative variants of CCA have achieved improved results, nearly all of their objective functions are nonconvex, implying that optimal solutions are difficult to obtain.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
January 2021
Although the least-squares regression (LSR) has achieved great success in regression tasks, its discriminating ability is limited since the margins between classes are not specially preserved. To mitigate this issue, dragging techniques have been introduced to remodel the regression targets of LSR. Such variants have gained certain performance improvement, but their generalization ability is still unsatisfactory when handling real data.
View Article and Find Full Text PDFBackground: The use of spectral imaging within the plant phenotyping and breeding community has been increasing due its utility as a non-invasive diagnostic tool. However, there is a lack of imaging systems targeted specifically at plant science duties, resulting in low precision for canopy-scale measurements. This study trials a prototype multispectral system designed specifically for plant studies and looks at its use as an early detection system for visually asymptomatic disease phases, in this case in .
View Article and Find Full Text PDFCross-modal metric learning (CML) deals with learning distance functions for cross-modal data matching. The existing methods mostly focus on minimizing a loss defined on sample pairs. However, the numbers of intraclass and interclass sample pairs can be highly imbalanced in many applications, and this can lead to deteriorating or unsatisfactory performances.
View Article and Find Full Text PDFInt J Neural Syst
May 2018
Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g.
View Article and Find Full Text PDFHeterogeneous face recognition deals with matching face images from different modalities or sources. The main challenge lies in cross-modal differences and variations and the goal is to make cross-modality separation among subjects. A margin-based cross-modality metric learning (MCML) method is proposed to address the problem.
View Article and Find Full Text PDFInt J Neural Syst
November 2014
In this paper, a structurally enhanced incremental neural learning technique is proposed to learn a discriminative codebook representation of images for effective image classification applications. In order to accommodate the relationships such as structures and distributions among visual words into the codebook learning process, we develop an online codebook graph learning method based on a novel structurally enhanced incremental learning technique, called as "visualization-induced self-organized incremental neural network (ViSOINN)". The hidden structural information in the images is embedded into the graph representation evolving dynamically with the adaptive and competitive learning mechanism.
View Article and Find Full Text PDFIn this paper, a novel method termed Multi-Instance Dictionary Learning (MIDL) is presented for detecting abnormal events in crowded video scenes. With respect to multi-instance learning, each event (video clip) in videos is modeled as a bag containing several sub-events (local observations); while each sub-event is regarded as an instance. The MIDL jointly learns a dictionary for sparse representations of sub-events (instances) and multi-instance classifiers for classifying events into normal or abnormal.
View Article and Find Full Text PDFThis paper presents a novel model for performing classification and visualization of high-dimensional data by means of combining two enhancing techniques. The first is a semi-supervised learning, an extension of the supervised learning used to incorporate unlabeled information to the learning process. The second is an ensemble learning to replicate the analysis performed, followed by a fusion mechanism that yields as a combined result of previously performed analysis in order to improve the result of a single model.
View Article and Find Full Text PDFInt J Neural Syst
February 2011
The empirical mode decomposition (EMD) method can adaptively decompose a non-stationary time series into a number of amplitude or frequency modulated functions known as intrinsic mode functions. This paper combines the EMD method with information analysis and presents a framework of information-preserving EMD. The enhanced EMD method has been exploited in the analysis of neural recordings.
View Article and Find Full Text PDFInt J Neural Syst
December 2008
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model.
View Article and Find Full Text PDFThe self-organising map (SOM) and its variant, visualisation induced SOM (ViSOM), have been known to yield similar results to multidimensional scaling (MDS). However, the exact connection has not been established. In this paper, a review on the SOM and its cost function and topological measures is provided first.
View Article and Find Full Text PDFIEEE Trans Neural Netw
October 2012
When used for visualization of high-dimensional data, the self-organizing map (SOM) requires a coloring scheme, such as the U-matrix, to mark the distances between neurons. Even so, the structures of the data clusters may not be apparent and their shapes are often distorted. In this paper, a visualization-induced SOM (ViSOM) is proposed to overcome these shortcomings.
View Article and Find Full Text PDFThe kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function.
View Article and Find Full Text PDFProteome science relies on bioinformatics tools to characterize proteins via their proteolytic peptides which are identified via characteristic mass spectra generated after their ions undergo fragmentation in the gas phase within the mass spectrometer. The resulting secondary ion mass spectra are compared with protein sequence databases in order to identify the amino acid sequence. Although these search tools (e.
View Article and Find Full Text PDFWe present a new method for content management and knowledge discovery using a topology-preserving neural network. The method, termed topological organization of content (TOC), can generate a taxonomy of topics from a set of unannotated, unstructured documents. The TOC consists of a hierarchy of self-organizing growing chains (GCs), each of which can develop independently in terms of size and topics.
View Article and Find Full Text PDFInt J Neural Syst
August 2005
In this paper a novel approach is introduced for modeling and clustering gene expression time-series. The radial basis function neural networks have been used to produce a generalized and smooth characterization of the expression time-series. A co-expression coefficient is defined to evaluate the similarities of the models based on their temporal shapes and the distribution of the time points.
View Article and Find Full Text PDFThe self-organising map (SOM) is finding more and more applications in a wide range of fields, such as clustering, pattern recognition and visualisation. It has also been employed in knowledge management and information retrieval. We propose an alternative to existing 2-dimensional SOM based methods for document analysis.
View Article and Find Full Text PDFThis paper proposes the use of self-organizing maps (SOMs) to the blind source separation (BSS) problem for nonlinearly mixed signals corrupted with multiplicative noise. After an overview of some signal denoising approaches, we introduce the generic independent component analysis (ICA) framework, followed by a survey of existing neural solutions on ICA and nonlinear ICA (NLICA). We then detail a BSS method based on SOMs and intended for image denoising applications.
View Article and Find Full Text PDFThe self-organising map (SOM) has been successfully employed as a nonparametric method for dimensionality reduction and data visualisation. However, for visualisation the SOM requires a colouring scheme to imprint the distances between neurons so that the clustering and boundaries can be seen. Even though the distributions of the data and structures of the clusters are not faithfully portrayed on the map.
View Article and Find Full Text PDF