Titanium alloys, widely used in the aerospace, automotive and energy sectors, require complex casting and thermomechanical processing to achieve the high strengths required for load-bearing applications. Here we reveal that additive manufacturing can exploit thermal cycling and rapid solidification to create ultrastrong and thermally stable titanium alloys, which may be directly implemented in service. As demonstrated in a commercial titanium alloy, after simple post-heat treatment, adequate elongation and tensile strengths over 1,600 MPa are achieved.
View Article and Find Full Text PDFBackground: Cyclin-dependent kinase subunit 2 (CKS2) is a member of cyclin dependent kinase subfamily and the relationship between CKS2 and osteosarcoma (OS) remains to be further analyzed.
Methods: 80 OS and 41 non-tumor tissue samples were arranged to perform immunohistochemistry (IHC) to evaluate CKS2 expression between OS and non-tumor samples. The standard mean deviation (SMD) was calculated based on in-house IHC and tissue microarrays, and exterior high-throughput datasets for further verification of CKS2 expression trend in OS.
Background: CDC28 Protein Kinase Regulatory Subunit 1B (CKS1B) is a member of cyclin-dependent kinase subfamily and the relationship between CKS1B and osteosarcoma (OS) remains to be explored.
Methods: 80 OS and 41 nontumor tissue samples were arranged to conduct immunohistochemistry (IHC) to evaluate CKS1B expression between OS and nontumor samples. The standard mean deviation (SMD) was calculated based on in-house IHC and tissue microarrays and exterior high-throughput datasets for further verification of CKS1B expression in OS.
Dysregulation of micro-RNAs has been shown to contribute to multiple tumorigenic processes, as well as to correlate with tumor progression and prognosis. miR-199a has been shown to be dysregulated in many different tumor types; however, the association between miR-199a and the clinicopathological features of osteosarcoma is unknown, and the target gene for miR-199a and the regulatory mechanism are also unknown. In this study, we demonstrated that miR-199a-3p is expressed at low levels in osteosarcoma cells, which may inhibit the migration and invasion of these tumor cells.
View Article and Find Full Text PDFP21-activated kinase 4 (PAK4), a serine/threonine protein kinase, has involved in the regulation of cytoskeletal reorganization, cell proliferation, gene transcription, oncogenic transformation and cell invasion. Moreover, PAK4 overexpression, genetic amplification and mutations were detected in a variety of human tumors, which make it potential therapeutic target. In this paper we found that LCH-7749944, a novel and potent PAK4 inhibitor, effectively suppressed the proliferation of human gastric cancer cells through downregulation of PAK4/c-Src/EGFR/cyclin D1 pathway.
View Article and Find Full Text PDF