Publications by authors named "Huizeng Li"

Surface energy, as an intrinsic property of solids, plays a crucial role in modulating the characteristics of solid surfaces, especially of the solid-liquid interface. Due to inevitable processes such as surface adsorption or contamination, the surface energy of practical solids is usually nonuniform. However, if this nonuniformity is rationally designed and effectively utilized, it is capable of endowing great potential for liquid manipulation.

View Article and Find Full Text PDF

Beyond its role in cultural communication, printing technology has emerged as one of the most important approaches to distributing and patterning functional materials for advanced manufacturing. In a printing process, a stamp is employed to transfer functional inks to a target surface, generating a specific pattern that exactly replicates the stamp. Through precise manipulation of different inkdrops, herein, a "one stamp, diverse patterns" printing strategy is developed and achieves deposition of varied patterns utilizing a single stamp.

View Article and Find Full Text PDF

Numerous efforts have been devoted to harvesting sustainable energy from environment. Among the promising renewable resources, ambient heat exhibits attractive prospects due to its ubiquity and inexhaustibility, and has been converted into electricity through water evaporation-induced hydrovoltaic approaches. However, current hydrovoltaic approaches function only in low-humidity environments and continuously consume water.

View Article and Find Full Text PDF

Liquid manipulation using tubular actuators finds diverse applications ranging from microfluidics, printing, liquid transfer to micro-reactors. Achieving flexible and simple regulation of manipulated liquid droplets during transport is crucial for the tubular liquid actuators to perform complex and multiple functions, yet it remains challenging. Here, a facile tubular actuator for directional transport of various liquid droplets under the control of an externally applied magnetic field is presented.

View Article and Find Full Text PDF

Asymmetric mechanical transducers have important applications in energy harvesting, signal transmission, and micro-mechanics. To achieve asymmetric transformation of mechanical motion or energy, active robotic metamaterials, as well as materials with asymmetric microstructures or internal orientation, are usually employed. However, these strategies usually require continuous energy supplement and laborious fabrication, and limited transformation modes are achieved.

View Article and Find Full Text PDF

Self-assembly of colloidal nanoparticles has generated tremendous interest due to its widespread applications in structural colorations, sensors, and optoelectronics. Despite numerous strategies being developed to fabricate sophisticated structures, the heterogeneous self-assembly of a single type of nanoparticle in one step remains challenging. Here, facilitated by spatial confinement induced by a skin layer in a drying droplet, we achieve the heterogeneous self-assembly of a single type of nanoparticle by quickly evaporating a colloid-poly (ethylene glycol) (PEG) droplet.

View Article and Find Full Text PDF

For a drop on a very hot solid surface, a vapor film will form beneath the drop, which has been discovered by Leidenfrost in 1756. The vapor escaping from the Leidenfrost film causes uncontrollable flows, and actuates the drop to move around. Recently, although numerous strategies have been used to regulate the Leidenfrost vapor, the understanding of surface chemistry for modulating the phase-change vapor dynamics remains incomplete.

View Article and Find Full Text PDF

Inkjet printing provides an efficient routine for distributing functional materials into locations with well-designed arrangements. As one of the most critical factors in determining the printing quality, the impacting and depositing behaviors of ink drops largely depend on the wettability of the target surface. In addition to printing on solids with intrinsic wettability, various ink-drop impact dynamics and deposition morphologies have been reported through modifying the surface wettability including both homogeneous and heterogeneous, which opens up possibilities for applications such as advanced optic/electric device fabrication and highly sensitive detection.

View Article and Find Full Text PDF

Heterostructures have attracted enormous interest due to the properties arising from the coupling and synergizing between multiscale structures and the promising applications in electronics, mechanics, and optics. However, it is challenging for current technologies to precisely integrate cross-scale micro/nanomaterials in three dimensions (3D). Herein, we realize the precise spatial allocation of nanoblocks on micromatrices and programmable 3D optical heterostructure patterning via printing-assisted self-assembly.

View Article and Find Full Text PDF

Spots with dual structural colors on the skin of some organisms in nature are of tremendous interest due to the unique function of their dye-free colors. However, imitation of them requires complicated manufacturing processes, expensive equipment, and multiple predesigned building blocks. In this work, a one-pot strategy based on the phase-separation-assisted nonuniform self-assembly of monosized silica nanoparticles is developed to construct domes with dual structural colors.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the creation of complex synthetic materials called polymer hydrogels that mimic life-like behaviors through chemical reaction networks (CRNs), specifically using autocatalytic and fuel-driven reactions.
  • - The process starts with two compounds and involves multiple chemical reactions that transition the gel through four distinct states, demonstrating both autoevolution and dynamic changes under controlled conditions.
  • - By adjusting factors like concentration and pH, researchers can predict and control the behaviors of these hydrogels, opening new opportunities for designing materials in various applications.
View Article and Find Full Text PDF

Nonlinear elastic materials are significant for engineering and micromechanics. Droplets with the merits of easy-accessibility, diversity, and energy-absorption capability exhibit a variety of non-Hookean elastic behaviors. Herein, benefiting from the confinement of heterogeneous-wettable parallel plates, the non-Hookean mechanics of the droplet-based spring are systematically investigated.

View Article and Find Full Text PDF

Droplet manipulation is crucial for diverse applications ranging from bioassay to medical diagnosis. Current magnetic-field-driven manipulation strategies are mainly based on fixed or partially tunable structures, which limits their flexibility and versatility. Here, a reconfigurable magnetic liquid metal robot (MLMR) is proposed to address these challenges.

View Article and Find Full Text PDF

SignificanceAdjusting the floating states when objects float on water shows great potential for assembly, mineral flotation, nanostructured construction, and floating robot design, but the real-time regulation of floating states is challenging. Inspired by the different floating states of a falling fruit, we propose a facile strategy to transform the object between different floating states based on a three-segment three-phase contact line evolution. In addition, the potential of floating state transformation in solar-powered water evaporation, interface catalysis, and drug delivery is demonstrated.

View Article and Find Full Text PDF

Fibrous surfaces in nature have already exhibited excellent functions that are normally ascribed to the synergistic effects of special structures and material properties. The honey bee tongue, foraging liquid food in nature, has a unique segmented surface covered with dense hairs. Since honey bees are capable of using their tongue to adapt to possibly the broadest range of feeding environments to exploit every possible source of liquids, the surface properties of the tongue, especially the covering hairs, would likely represent an evolutionary optimization.

View Article and Find Full Text PDF

Droplet impact on solid surfaces is essential for natural and industrial processes. Particularly, controlling the instability after droplet impact, and avoiding the satellite drops generation, have aroused great interest for its significance in inkjet printing, pesticide spraying, and hydroelectric power collection. Herein, we found that breaking the symmetry of the droplet impact dynamics using patterned-wettability surfaces can suppress the Plateau-Rayleigh instability during the droplet rebounding and improve the energy collection efficiency.

View Article and Find Full Text PDF

Only 0.1% of the acoustic energy can transmit across the water-air interface because of the huge acoustic impedance mismatch. Enhancing acoustic transmission across the water-air interface is of great significance for sonar communications and sensing.

View Article and Find Full Text PDF

Structural colors are promising candidates for their antifading and eco-friendly characteristics. However, high cost and complicated processing inevitably hinder their development. Here, we propose a facile full-color structural-color inkjet printing strategy with a single transparent ink from the common polymer materials.

View Article and Find Full Text PDF

Structural color attracts considerable scientific interests and industrial explorations in various fields for the eco-friendly, fade-resistant, and dynamic advantages. After the long-period evolution, nature has achieved the optimized color structures at various length scales, which has inspired people to learn and replicate them to improve the artificial structure color. In this review, we focus on the design of artificial structural colors based on colloidal particle assembly and summarize the functional bioinspired structure colors.

View Article and Find Full Text PDF

Liquid manipulation on solid surfaces has attracted a lot of attention for liquid collection and droplet-based microfluidics. However, manipulation strategies mainly depend on chemical modification and artificial structures. Here, we demonstrate a feasible and general strategy based on the self-shrinkage of the droplet induced via specific vapors to efficiently collect liquids and flexibly carry out droplet-based reactions.

View Article and Find Full Text PDF

Precise separation and localization of microdroplets are fundamental for various fields, such as high-throughput screening, combinatorial chemistry, and the recognition of complex analytes. We have developed a droplet self-splitting strategy to divide an impacting droplet into predictable microdroplets and deposit them at preset spots for simultaneous multidetection. No matter exchange was observed between these microdroplets, so they could be manipulated independently.

View Article and Find Full Text PDF

Droplet manipulations are fundamental to numerous applications, such as water collection, medical diagnostics, and drug delivery. Structure-based liquid operations have been widely used both in nature and in artificial materials. However, current strategies depend mainly on fixed structures to realize unidirectional water movement, while multiple manipulation of droplets is still challenging.

View Article and Find Full Text PDF

Extensive applications for photodetectors have led to demand for high-responsivity polarization-sensitive light detection. Inspired by the elaborate architecture of butterfly Papilio paris, a 1D nanograting bonded porous 2D photonic crystal perovskite photodetector (G-PC-PD) using a commercial DVD master and 2D crystalline colloidal arrays template was fabricated. The coupling effect from grating diffraction and reflection of the PC stopband renders the enhanced light harvesting of G-PC-PD.

View Article and Find Full Text PDF

A 2D anisotropic photonic crystal (APC) of bowl-shaped nanoparticles has been fabricated using deformable spherical nanoparticles. The prepared 2D isotropic photonic crystal (IPC) of spherical nanoparticles is transformed into a 2D APC by a chemical etching process, in which the interiors of the spherical nanoparticles are preferentially dissolved to eventually form a bowl-like morphology. Due to the accurate and controllable deformability of the spherical nanoparticles, the arrangement and orientations of the bowl-shaped nanoparticles are highly ordered and uniform.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpickpoqorqqpv9es5luka36soi2g6tql): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once