Publications by authors named "Huiyuan Ji"

Astrocytes are important cellular centers of cholesterol synthesis and metabolism that help maintain normal physiological function at the organism level. Spinal cord injury results in aberrant cholesterol metabolism by astrocytes and excessive production of oxysterols, which have profound effects on neuropathology. 25-Hydroxycholesterol (25-HC), the main product of the membrane-associated enzyme cholesterol-25-hydroxylase (CH25H), plays important roles in mediating neuroinflammation.

View Article and Find Full Text PDF

Background: Two activation states of reactive astrocytes termed A1 and A2 subtypes emerge at the lesion sites following spinal cord injury (SCI). A1 astrocytes are known to be neurotoxic that participate in neuropathogenesis, whereas A2 astrocytes have been assigned the neuroprotective activity. Heat shock transcription factor 1 (HSF1) plays roles in protecting cells from stress-induced apoptosis and in controlling inflammatory activation.

View Article and Find Full Text PDF

Background: Astrocytes are the predominant glial cell type in the central nervous system (CNS) that can secrete various cytokines and chemokines mediating neuropathology in response to danger signals. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of macrophage migration inhibitory factor (MIF) protein, has been revealed to share an overlapping function with MIF in some ways. However, its cellular distribution pattern and mediated astrocyte neuropathological function in the CNS remain unclear.

View Article and Find Full Text PDF