The coupling of photovoltaic and pyroelectric effects is a common phenomenon in ferroelectric films and often results in coupling enhancements. Although the coupling effects of a variety of ferroelectric films have been examined in terms of improved performance, they have yet to be quantitatively ranked and assessed. Here, by taking the charge coupling factor, the Yang's charge, and output energy as metrics to evaluate the coupling performance, a methodology is developed for evaluating the performance of a range ferroelectric films when the pyroelectric and photovoltaic effects are coupled.
View Article and Find Full Text PDFFerroelectric materials have a variety of properties, such as piezoelectricity, pyroelectricity, and the ferroelectric photovoltaic effect, which enable them to obtain electrical energy from various external stimuli. Here, we report a coupled nanogenerator based on flexible BTO ferroelectric films with a cantilevered beam structure. It combines the photovoltaic and flexoelectric effects in a ferroelectric materials-based coupled nanogenerator for simultaneously scavenging vibration energy and light energy, thus improving energy scavenging performance.
View Article and Find Full Text PDFFerroelectric materials are widely recognized for their ability to generate photovoltaic voltages larger than their bandgap, making them ideal candidates for photodetector applications. Here, we report a self-powered UV photodetector based on a BiNaTiO (BNT) thin film prepared by the sol-gel method. Compared with conventional photodetectors based on a single detection indicator, the demonstrated photodetector realizes UV light intensity detection over a wide linear range using a current and voltage dual indicator detection method.
View Article and Find Full Text PDFDielectric capacitors are widely used in pulse power systems, electric vehicles, aerospace, and defense technology as they are crucial for electronic components. Compact, lightweight, and diversified designs of electronic components are prerequisites for dielectric capacitors. Additionally, wide temperature stability and high energy storage density are equally important for dielectric materials.
View Article and Find Full Text PDF