Publications by authors named "Huiyao Xiang"

Myelinating oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is an immune-mediated inflammatory demyelinating disease of the central nervous system. Its specific etiology and pathogenesis remain unclear. In recent years, there have been increasing reports of MOGAD occurring after infections.

View Article and Find Full Text PDF

Guillain-Barré syndrome (GBS) and autoimmune gastritis (AIG) are both autoimmune diseases (ADs) that have a low prevalence in China. Both conditions involve the immune system mistakenly attacking the body's own tissues. GBS primarily affects the peripheral nervous system, leading to muscle weakness and paralysis, while AIG targets the stomach lining, causing inflammation and reduced absorption of vital nutrients.

View Article and Find Full Text PDF

Myelinating oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is an inflammatory demyelinating disease of the central nervous system (CNS) mediated by MOG antibodies (MOG-IgG). It is associated with autoimmunity and encompasses various syndromes. However, manifestations presenting with symptoms of suppurative meningoencephalitis are rare.

View Article and Find Full Text PDF

Background: Antinuclear antibodies (ANAs) are crucial in diagnosing autoimmune diseases, mainly systemic lupus erythematosus (SLE). This study aimed to compare the performance of chemiluminescence assay (CLIA) and line immunoassay (LIA) in detecting ANAs in patients with autoimmune diseases, evaluate their diagnostic accuracy for SLE, and develop a novel diagnostic model using CLIA-detected antibodies for SLE. Specimens from patients with autoimmune diseases and physical examination specimens were collected to parallel detect specific antibodies.

View Article and Find Full Text PDF

The invasive spreading of residual osteosarcoma cells becomes a serious threat to human health, urgently needing new bone regenerative biomaterials for orthopedic therapy. Thus, in this work, selenite-substituted hydroxyapatite (SeHA) nanoparticles were prepared for both inhibiting the recurrence of the tumor and accelerating the regenerative repair of bone defect. Physicochemical characterization showed these synthetic nanoparticles were spherical poly-crystals with the shape of snowflakes.

View Article and Find Full Text PDF

Endothelial cell-specific molecule 2 (ECSM2) is a transmembrane protein located in cell-cell junction of endothelial cells (EC). ECSM2 was determined to play an important role in vascular development, EC migration, apoptosis and proliferation, however, no functional domains were determined in intracellular and extracellular region of ECSM2. In current work, functional domains of ECSM2, the relationship of ECSM2 with other endothelial specific protein such as VE-cadherin and the role of ECSM2 in neovascular diseases were determined.

View Article and Find Full Text PDF

This study aimed to investigate the anti-tumor activity of RY10-4, a small molecular that was designed and synthesized based on the structure of protoapigenone. A previous screening study showed that RY10-4 possessed anti-proliferative effects against HepG2 human hepatocellular carcinoma cells. However, the full range of RY10-4 anti-cancer effects on liver tumors and the underlying mechanisms have not been identified.

View Article and Find Full Text PDF

Background: Neurogenic neuroprotection is a promising approach for treating patients with ischemic brain lesions. Fastigial nucleus stimulation (FNS) has been shown to reduce the tissue damage resulting from focal cerebral ischemia in the earlier studies. However, the mechanisms of neuroprotection induced by FNS remain unclear.

View Article and Find Full Text PDF

Previous studies have shown that fastigial nucleus stimulation (FNS) reduces tissue damage resulting from focal cerebral ischemia. Although the mechanisms of neuroprotection induced by FNS are not entirely understood, important data have been presented in the past two decades. MicroRNAs (miRNAs) are a newly discovered group of non-coding small RNA molecules that negatively regulate target gene expression and are involved in the regulation of cell proliferation and cell apoptosis.

View Article and Find Full Text PDF

Aims: Studies showed fastigial nucleus stimulation (FNS) reduced brain damage, but the mechanisms of neuroprotection induced by FNS were not entirely understood; MicroRNAs are noncoding RNA molecules that regulate gene expression in a posttranscriptional manner, but their functional consequence in response to ischemia-reperfusion (IR) remains unknown. We investigated the role of microRNA-29c in the neuroprotection induced by FNS in rat.

Methods: The IR rat models were conducted 1 day after FNS.

View Article and Find Full Text PDF