Publications by authors named "Huiyang Sha"

Porcine reproductive and respiratory syndrome virus (PRRSV) has become widespread in China particularly the highly pathogenic porcine reproductive and respiratory syndromes (HP-PRRSV), NADC30, and NADC34 strains, and has posed a threat to the swine industry for over 20 years. To monitor genetic variation in PRRSV-2 GP3 strains in China, we analyzed 618 strains isolated between 1996 to 2023 and constructed phylogenetic trees. Additionally, 60 selected strains were used to analyze nucleotide and amino acid homology.

View Article and Find Full Text PDF
Article Synopsis
  • PRRS is a major disease affecting pigs globally, and there are currently no effective treatments available against it.
  • The study focuses on using small interfering RNA (siRNA) to target the NSP4 protein of the PRRS virus, which plays a key role in the virus's replication.
  • Results showed that overexpressing NSP4 boosts PRRSV-2 replication, while specific shRNAs targeting NSP4 can successfully inhibit this replication in lab cells, suggesting their potential for further research.
View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious and pathogenic infectious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). It manifests as reproductive disorders in sows and respiratory disorders in piglets. PRRSV infects swine herds with symptoms such as abortions, stillbirths, and mummified fetuses in gestating sows.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) has been prevalent in China for more than 25 years and remains one of the most significant pathogens threatening the pig industry. The high rate of mutation and frequent recombination of PRRSV have exacerbated its prevalence, particularly with the emergence of highly pathogenic PRRSV (HP-PRRSV) has significantly increased the pathogenicity of PRRSV, posing a serious threat to the development of Chinese pig farming. To monitor the genetic variation of PRRSV-2 in China, the sequences of 517 PRRSV-2 strains from 1996 to 2022 were analyzed and phylogenetic trees were constructed.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in the pig industry, but its pathogenesis is not yet fully understood. The disease is caused by the PRRS virus (PRRSV), which primarily infects porcine alveolar macrophages and disrupts the immune system. Unfortunately, there is no specific drug to cure PRRS, so vaccination is crucial for controlling the disease.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a virulent infectious disease caused by the PRRS virus (PRRSV). The non-structural protein 11 (NSP11) of PRRSV is a nidovirus-specific endonuclease (NendoU), which displays uridine specificity and catalytic functions conserved throughout the entire NendoU family and exerts a wide range of biological effects. This review discusses the genetic evolution of NSP11, its effects on PRRSV replication and virulence, its interaction with other PRRSV and host proteins, its regulation of host immunity, the conserved characteristics of its enzyme activity (NendoU), and its diagnosis, providing an essential theoretical basis for in-depth studies of PRRSV pathogenesis and vaccine design.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is one of the most serious infectious diseases that detrimentally affects the pig industry worldwide. The disease, which is typically difficult to control, is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV), the genome of which (notably the gene) undergoes rapid mutation. In this study, we sought to determine the genetic variation in the PRRSV-2 gene in China from 1996 to 2021.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is an acute, febrile, and highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Glycoprotein 5 (GP5) is a glycosylated envelope protein encoded by the PRRSV , which has good immunogenicity and can induce the body to produce neutralizing antibodies. Therefore, study of GP5 protein is of great significance in the diagnosis, prevention, and control of PRRSV and the development of new vaccines.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) has continuously mutated since its first isolation in China in 1996, leading to difficulties in infection prevention and control. Infections caused by PRRSV-2 strains are the main epidemic strains in China, as determined by phylogenetic analysis. In this study, we focused on the prevalence and genetic variations of the non-structural protein 4 (NSP4) from PRRSV-2 over the past 20 years in China.

View Article and Find Full Text PDF

Background: Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) is a constant threat to the swine industry worldwide. 2', 5'-oligoadenylate synthetase-like (OASL) protein has antiviral activity, but this has not been demonstrated for PRRSV-2, and the mechanism is not well elucidated.

Results: In this study, the expression of OASL1 in porcine alveolar macrophages (PAMs) induced by interferon (IFN)-β stimulation and PRRSV-2 infection was examined by quantitative real-time polymerase chain reaction and western blotting.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRS is also called "blue ear disease" because of the characteristic blue ear in infected sows and piglets. Its main clinical features are reproductive disorders of sows, breathing difficulties in piglets, and fattening in pigs, which cause considerable losses to the swine industry.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which has been regarded as a persistent challenge for the pig industry in many countries. PRRSV is internalized into host cells by the interaction between PRRSV proteins and cellular receptors. When the virus invades the cells, the host antiviral immune system is quickly activated to suppress the replication of the viruses.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious and virulent infectious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV), which has substantial economic losses in the pig industry worldwide, and PRRSV attenuated vaccines and inactivated vaccines do have limitations in immune protection. The discovery of new antiviral targets has become a new research field. The proteomic studies have shown that the PRRSV NSP2 protein interacts with tripartite motif protein 4 (TRIM4), but it was still unknown whether TRIM4 regulates PRRSV infections.

View Article and Find Full Text PDF

Monkey diseases are becoming increasingly severe, and some may be transmitted to humans through direct and indirect contact. Innate immunity is the first line of defense against foreign microorganisms. It is of great significance to explore the immune characteristics of monkey and human diseases.

View Article and Find Full Text PDF

Stimulator of interferon gene (STING), an adaptor molecule in the immune system, is involved in mediating the response to viral and bacterial infections, anti-tumor immunity, autoimmune diseases, and lipid metabolism. There have been reports on the cloning and function of STING in humans, pigs, chickens, and cats; however, STING has not been characterized in non-human primates or monkeys to date. Therefore, in this study, the rhesus macaque (Macaca mulata) STING gene was cloned, and we performed preliminary functional tests to examine its role in the interferon (IFN) pathway.

View Article and Find Full Text PDF