Publications by authors named "Huiyan Chuan"

The reasonable utilization of water resources and real-time monitoring of water pollution are the core tasks of current world hydrological and water conservancy work. Novel technologies and methods for monitoring water pollution are important means to ensure water health. However, the absence of intuitive and simple analysis methods for the assessment of regional pollution in large-scale water bodies has prevented scientists from quickly grasping the overall situation of water pollution.

View Article and Find Full Text PDF

Background: For a long time, the environment hazards caused by cyanobacteria bloom and associated microcystins have attracted attention worldwide. Microcystin-LR (MC-LR) is the most widely distributed and most toxic toxin. At present, numerous MC-LR detection methods exist many drawbacks.

View Article and Find Full Text PDF

Eutrophication remains one of the most challenging environmental problems, and microcystin-leucine-arginine (MC-LR) produced in eutrophic waters would cause serious ecological risks. However, the traditional assessment methods of trophic status, such as water quality index (WQI) and trophic status index (TSI), could not directly reflect the existence or concentration of MC-LR in water. Moreover, traditional MC-LR detection methods are costly and time-consuming.

View Article and Find Full Text PDF

In eutrophic water bodies, sulfides are closely related to the growth of cyanobacteria and the production of microcystin-LR (MC-LR). To date, the underlying interaction mechanism between a sulfides and MC-LR remains controversial. Thus, visually presenting the distribution characteristics of sulfides and MC-LR in contaminated water is crucial.

View Article and Find Full Text PDF

Numerous toxicological and epidemiological studies have shown that microcystin-LR (MC-LR) could cause a variety of toxicity to humans and animals. However, the absence of effective methods to trace MC-LR in biological systems has hindered the in-depth understanding of the mechanism of MC-LR toxicity. Near-infrared (NIR) fluorescent probes are crucial tools for accurate visualization and in-depth study of specific molecules in biological systems.

View Article and Find Full Text PDF

Increasing global warming and eutrophication have led to frequent outbreaks of cyanobacteria blooms in freshwater. Cyanobacteria blooms cause the death of aquatic and terrestrial organisms and have attracted considerable attention since the 19th century. Microcystin-LR (MC-LR) is one of the most typical cyanobacterial toxins.

View Article and Find Full Text PDF