Spectrochim Acta A Mol Biomol Spectrosc
November 2022
Cysteine (Cys) is one of the most important biothiols that plays a crucial role in many physiological and pathological processes, and therefore it is of great importance to detect and analyze Cys in subcellular environments, such as in lysosomes. However, only a few fluorescent probes were reported to be capable of detecting Cys in lysosomes selectively. In this wok, we designed and developed a simple, accessible flavone-based fluorescent probe LFA for detecting Cys in lysosomes.
View Article and Find Full Text PDFMonitoring of cysteine (Cys) is of significant importance for studying Cys-involved biological functions and clinically diagnosing Cys-related diseases. Recently, few fluorescent probes with two different reacting sites were reported to be capable of sensing different concentration ranges of Cys with distinct fluorescence signals, particularly suiting for bioimaging. However, due to relative sophisticated synthesis and moderate selectivity, the applications of these probes were still severely restricted.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a chronic neurodegenerative disease. Better imaging and early diagnosis of biomarkers of AD is extremely important for therapeutic interventions. The amyloid cascade hypothesis and its revised version identify insoluble β-amyloid deposition as a good diagnostic biomarker for AD.
View Article and Find Full Text PDFA near-infrared distyryl boron dipyrromethene-based sensor bearing one bis(1,2,3-triazole)amino receptor has been synthesized. This probe selectively and quickly binds to Hg and Cu ions in CHCN/HO (5:1 v/v) and exhibits remarkably blue-shifted absorption and fluorescence bands due to the inhibition of the intramolecular charge transfer process. The fluorescence changes of this probe upon binding to Hg or Cu ion are totally different, undergoing a ratiometric fluorescence enhancement (for Hg) or a fluorescence quenching (for Cu) mechanism.
View Article and Find Full Text PDFA lysosome-targeting dual-functional fluorescent probe was rationally designed and developed for imaging intracellular lysosomal viscosity and beta-amyloid. More importantly, the real-time tracking of the dynamic movement of lysosomes, as vesicle structures, has been achieved using Lyso-MC.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2019
Fe ions play an important role in both biological and environmental field. In this work, two novel rhodamine-based colorimetric and fluorescent probes (RBA2 and RBA3) were designed and synthesized for the efficient detection of Fe. Upon the addition of Fe, the fluorescence intensity of RBA2 and RBA3 enhanced 108-fold and 222-fold, respectively.
View Article and Find Full Text PDFTwo neutral merocyanine-based near-infrared fluorescent probes were for the first time developed through rational engineering of the classical cationic cyanine scaffold IR-780 for in vivo imaging of amyloid-β plaques. In vivo NIRF imaging revealed that the probe could penetrate the blood-brain barrier and efficiently differentiate the living transgenic and wild-type mice.
View Article and Find Full Text PDF