Researchers are showing an increasing interest in high-performance flexible pressure sensors owing to their potential uses in wearable electronics, bionic skin, and human-machine interactions, etc. However, the vast majority of these flexible pressure sensors require extensive nano-architectural design, which both complicates their manufacturing and is time-consuming. Thus, a low-cost technology which can be applied on a large scale is highly desirable for the manufacture of flexible pressure-sensitive materials that have a high sensitivity over a wide range of pressures.
View Article and Find Full Text PDFAn efficient and chemoselective deprotection protocol for aryl silyl ethers using LiOAc as a bifunctional Lewis acid-Lewis base catalyst was described. Acetates, epoxides, and aliphatic silyl ethers were preserved, whereas aryl TBS and TBDPS ethers can be differentiated.
View Article and Find Full Text PDF