Publications by authors named "Huiwei Ding"

The current understanding of the mechanism of high-entropy layered double hydroxide (LDH) on enhancing the efficiency of activating peroxymonosulfate (PMS) remains limited. This work reveals that a strong strain effect, driven by high entropy, modulates the structure of FeCoNiCuZn-LDH (HE-LDH) as evidenced by geometric phase analysis (GPA) and density functional theory (DFT) calculations. Compared to FeCoNiZn-LDH and FeCoNi-LDH with weaker strain effects, the high entropy-driven strain effect in HE-LDH shortens metal-oxygen-hydrogen (MOH) bond lengths, allows system to be in a constant steady state during catalysis, reduces the leaching of active M-OH sites, and enhances the adsorption capacity of these sites and the excess strain strength of the interfacial stretches the I of the PMS, facilitates reactive oxygen species (·OH, SO·, O and O·) generation, and thereby improving the efficiency of PMS in degrading tetracycline (TC).

View Article and Find Full Text PDF

Generally, preparing high-efficiency heterojunction photocatalysts via a facile room-temperature route is attractive from the perspective of energy and labor saving. Herein, by using dried and glacial acetic acid (HAc)-adsorbed bismuth nitrate, instead of Bi(NO)·5HO, as a Bi source, a β-BiO/BiOI heterojunction with well dispersed flowery hierarchical architecture was synthesized, which endows it with high surface area, open channels and good light harvest. More importantly, the change of the precursor achieved a successful transformation for both of phase and heterojunction type, i.

View Article and Find Full Text PDF