Rapid urbanization is profoundly impacting the ecological environment and landscape patterns, leading to a decline in ecosystem services (ES) and posing threats to both ecological security and human well-being. This study aimed to identify the spatial and temporal patterns of ecosystem service bundles (ESB) in the Beibu Gulf urban agglomeration from 2000 to 2030, analyze the trajectory of ESB evolution, and elucidate the drivers behind ESB formation and evolution. We utilized the Patch-generating Land Use Simulation (PLUS) model to establish baseline (BLS), carbon sequestration priority (CPS), and urbanization priority (UPS) scenarios for simulating land use patterns in 2030.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2024
To grasp the impact of carbon metabolism on the evolution of "production-living-ecological" (PLE) space due to land use change in the Changsha-Zhuzhou-Xiangtan (CZT) urban agglomeration, this study delves into the temporal and spatial distribution of PLE space carbon metabolism by constructing a carbon flow model. We evaluate the influence of positive and negative carbon flows on carbon metabolism using ecological network analysis and utility assessment. Furthermore, we delve into the driving factors behind carbon metabolism through redundancy analysis (RDA).
View Article and Find Full Text PDF