Publications by authors named "Huitian Diao"

In response to the 2022 outbreak of mpox driven by unprecedented human-to-human monkeypox virus (MPXV) transmission, we designed BNT166, aiming to create a highly immunogenic, safe, accessible, and scalable next-generation vaccine against MPXV and related orthopoxviruses. To address the multiple viral forms and increase the breadth of immune response, two candidate multivalent mRNA vaccines were evaluated pre-clinically: a quadrivalent vaccine (BNT166a; encoding the MPXV antigens A35, B6, M1, H3) and a trivalent vaccine (BNT166c; without H3). Both candidates induced robust T cell responses and IgG antibodies in mice, including neutralizing antibodies to both MPXV and vaccinia virus.

View Article and Find Full Text PDF
Article Synopsis
  • The Omicron variant of SARS-CoV-2 has evolved to produce sublineages that can evade neutralizing antibodies differently, particularly affecting the immune response from mRNA vaccines.
  • Breakthrough infections from the Omicron BA.4/BA.5 variant boost neutralization for some sublineages like BA.4.6 and BF.7 but not for others like BA.2.75.2 and XBB.
  • Despite concerns about B cell immunity failure against certain sublineages, T cell immunity remains strong and effective, potentially helping to prevent severe COVID-19 outcomes even in the face of these emerging variants.
View Article and Find Full Text PDF

T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles.

View Article and Find Full Text PDF

CD8 T cells with stem cell-like properties (T ) sustain adaptive immunity to intracellular pathogens and tumors. However, the developmental origins and chromatin regulatory factors (CRFs) that establish their differentiation are unclear. Using an RNA interference screen of all CRFs we discovered the histone methylase Mll1 was required during T cell receptor (TCR) stimulation for development of a T precursor state and mature memory (T ) cells, but not short-lived or transitory effector cell-like states, in response to viral infections and tumors.

View Article and Find Full Text PDF

T follicular helper (TFH) cells are essential for developing protective Ab responses following vaccination. Greater understanding of the genetic program leading to TFH differentiation is needed. Chromatin modifications are central in the control of gene expression.

View Article and Find Full Text PDF

T follicular helper (T) cells are a specialized subset of CD4 T cells that deliver critical help signals to B cells for the production of high-affinity Abs. Understanding the genetic program regulating T differentiation is critical if one wants to manipulate T cells during vaccination. A large number of transcription factor (TFs) involved in the regulation of T differentiation have been characterized.

View Article and Find Full Text PDF

In response to infection, pathogen-specific CD8 T cells differentiate into functionally diverse effector and memory T cell populations critical for resolving disease and providing durable immunity. Through small-molecule inhibition, RNAi studies, and induced genetic deletion, we reveal an essential role for the chromatin modifier and BET family member BRD4 in supporting the differentiation and maintenance of terminally fated effector CD8 T cells during infection. BRD4 bound diverse regulatory regions critical to effector T cell differentiation and controlled transcriptional activity of terminal effector-specific super-enhancers in vivo.

View Article and Find Full Text PDF

Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP).

View Article and Find Full Text PDF

T follicular helper (T) cells are a distinct type of CD4 T cells that are essential for most antibody and B lymphocyte responses. T cell regulation and dysregulation is involved in a range of diseases. Bcl-6 is the lineage-defining transcription factor of T cells and its activity is essential for T cell differentiation and function.

View Article and Find Full Text PDF

The Hippo pathway regulates cell proliferation and organ size through control of the transcriptional regulators YAP (yes-associated protein) and TAZ. Upon extracellular stimuli such as cell-cell contact, the pathway negatively regulates YAP through cytoplasmic sequestration. Under conditions of low cell density, YAP is nuclear and associates with enhancer regions and gene promoters.

View Article and Find Full Text PDF

Multidrug resistance-1 (MDR1) acts as a chemotherapeutic drug efflux pump in tumor cells, although its physiological functions remain enigmatic. Using a recently developed MDR1-knockin reporter allele (Abcb1aAME), we found that constitutive MDR1 expression among hematopoietic cells was observed in cytolytic lymphocytes-including CD8+ cytotoxic T lymphocytes (CTLs) and natural killer cells-and regulated by Runt-related (Runx) transcription factors. Whereas MDR1 was dispensable for naive CD8+ T cell development, it was required for both the normal accumulation of effector CTLs following acute viral infection and the protective function of memory CTLs following challenge with an intracellular bacterium.

View Article and Find Full Text PDF

Widespread use of gene therapy technologies is limited in part by the lack of small genetic switches with wide dynamic ranges that control transgene expression without the requirement of additional protein components. In this study, we engineered a class of type III hammerhead ribozymes to develop RNA switches that are highly efficient at cis-cleaving mammalian mRNAs and showed that they can be tightly regulated by a steric-blocking antisense oligonucleotide. Our variant ribozymes enabled in vivo regulation of adeno-associated virus (AAV)-delivered transgenes, allowing dose-dependent and up to 223-fold regulation of protein expression over at least 43 weeks.

View Article and Find Full Text PDF

The process by which naïve CD8 T cells become activated, accumulate, and terminally differentiate as well as develop into memory cytotoxic T lymphocytes (CTLs) is central to the development of potent and durable immunity to intracellular infections and tumors. In this review, we discuss recent studies that have elucidated ancestries of short-lived and memory CTLs during infection, others that have shed light on gene expression programs manifest in individual responding cells and chromatin remodeling events, remodeling factors, and conventional DNA-binding transcription factors that stabilize the differentiated states after activation of naïve CD8 T cells. Several models have been proposed to conceptualize how naïve cells become memory CD8 T cells.

View Article and Find Full Text PDF

T cell receptor (TCR) stimulation of naive CD8 T cells initiates reprogramming of cis-regulatory landscapes that specify effector and memory cytotoxic T lymphocyte (CTL) differentiation. We mapped regions of hyper-accessible chromatin in naive cells during TCR stimulation and discovered that the transcription factor (TF) Runx3 promoted accessibility to memory CTL-specific cis-regulatory regions before the first cell division and was essential for memory CTL differentiation. Runx3 was specifically required for accessibility to regions highly enriched with IRF, bZIP and Prdm1-like TF motifs, upregulation of TFs Irf4 and Blimp1, and activation of fundamental CTL attributes in early effector and memory precursor cells.

View Article and Find Full Text PDF

Our aim is to reveal the role of interleukin 6 (IL-6) in the pathogenesis of systemic lupus erythematosus (SLE) in a murine model of SLE. Normal female C57BL/6 mice were immunized with syngeneic-activated lymphocyte-derived DNA (ALD-DNA) to induce SLE. Non-immunized mice were used as control.

View Article and Find Full Text PDF