Publications by authors named "Huitao Feng"

Protein-protein interactions (PPIs) play crucial roles in almost all biological processes from cell-signaling and membrane transport to metabolism and immune systems. Efficient characterization of PPIs at the molecular level is key to the fundamental understanding of PPI mechanisms. Even with the gigantic amount of PPI models from graphs, networks, geometry and topology, it remains as a great challenge to design functional models that efficiently characterize the complicated multiphysical information within PPIs.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) are involved in almost all biological processes in the cell. Understanding protein-protein interactions holds the key for the understanding of biological functions, diseases and the development of therapeutics. Recently, artificial intelligence (AI) models have demonstrated great power in PPIs.

View Article and Find Full Text PDF

With the great advancements in experimental data, computational power and learning algorithms, artificial intelligence (AI) based drug design has begun to gain momentum recently. AI-based drug design has great promise to revolutionize pharmaceutical industries by significantly reducing the time and cost in drug discovery processes. However, a major issue remains for all AI-based learning model that is efficient molecular representations.

View Article and Find Full Text PDF

Molecular descriptors are essential to not only quantitative structure activity/property relationship (QSAR/QSPR) models, but also machine learning based chemical and biological data analysis. In this paper, we propose persistent spectral hypergraph (PSH) based molecular descriptors or fingerprints for the first time. Our PSH-based molecular descriptors are used in the characterization of molecular structures and interactions, and further combined with machine learning models, in particular gradient boosting tree (GBT), for protein-ligand binding affinity prediction.

View Article and Find Full Text PDF