A single instrument that includes multiple optical channels was developed to simultaneously measure various optical and associated biophysical characteristics of a bacterial colony. The multi-channel device can provide five distinct optical features without the need to transfer the sample to multiple locations or instruments. The available measurement channels are bright-field light microscopy, 3-D colony-morphology map, 2-D spatial optical-density distribution, spectral forward-scattering pattern, and spectral optical density.
View Article and Find Full Text PDFWe report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation by smartphone (BAQS), provides an opportunity for onsite analysis and quantitation of luminescent signals from biological and non-biological sensing elements which emit photons in response to an analyte. A simple cradle that houses the smartphone, sample tube, and collection lens supports the measuring platform, while noise reduction by ensemble averaging simultaneously lowers the background and enhances the signal from emitted photons.
View Article and Find Full Text PDFA phenotyping of bacterial colonies on agar plates using forward-scattering diffraction-pattern analysis provided promising classification of several different bacteria such as Salmonella, Vibrio, Listeria, and E. coli. Since the technique is based on forward-scattering phenomena, light transmittance of both the colony and the medium is critical to ensure quality data.
View Article and Find Full Text PDFWe report a multispectral elastic-light-scatter instrument that can simultaneously detect three-wavelength scatter patterns and associated optical densities from individual bacterial colonies, overcoming the limits of the single-wavelength predecessor. Absorption measurements on liquid bacterial samples revealed that the spectroscopic information can indeed contribute to sample differentiability. New optical components, including a pellicle beam splitter and an optical cage system, were utilized for robust acquisition of multispectral images.
View Article and Find Full Text PDFUnlabelled: In this study, we investigated whether a laser scatterometer designated BARDOT (bacterial rapid detection using optical scattering technology) could be used to directly screen colonies of Listeria monocytogenes, a model pathogen, with mutations in several known virulence genes, including the genes encoding Listeria adhesion protein (LAP; lap mutant), internalin A (ΔinlA strain), and an accessory secretory protein (ΔsecA2 strain). Here we show that the scatter patterns of lap mutant, ΔinlA, and ΔsecA2 colonies were markedly different from that of the wild type (WT), with >95% positive predictive values (PPVs), whereas for the complemented mutant strains, scatter patterns were restored to that of the WT. The scatter image library successfully distinguished the lap mutant and ΔinlA mutant strains from the WT in mixed-culture experiments, including a coinfection study using the Caco-2 cell line.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
November 2016
Despite the advancement of recent molecular technologies, culturing is still considered the gold standard for microbial sample analysis. Here we review three different bacterial colony-based screening modalities that provide significant information beyond the simple shape and color of the colony. The plate imaging technique provides numeration and quantitative spectral reflectance information for each colony, while Raman spectroscopic analysis of bacteria colonies relates the Raman-shifted peaks to specific chemical bonding.
View Article and Find Full Text PDFA simple device and associated analytical methods are reported. We provide objective and accurate determination of saliva alcohol concentrations using smartphone-based colorimetric imaging. The device utilizes any smartphone with a miniature attachment that positions the sample and provides constant illumination for sample imaging.
View Article and Find Full Text PDFA theoretical model for spectral forward scatter patterns from a bacterial colony based on elastic light scatter is presented. The spectral forward scatter patterns are computed by scalar diffraction theory, and compared with experimental results of three discrete wavelengths (405 nm, 635 nm, and 904 nm). To provide quantitative analysis, spectral dependence of diffraction ring width, gap, maxima, minima, and the first deflection point are monitored.
View Article and Find Full Text PDFBacillus species are widely distributed in nature and have great significance both as industrially beneficial microbes and as public health burdens. We employed a novel light-scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology) for instant screening of colonies of Bacillus species on agar plates. A total of 265 Bacillus and non-Bacillus isolates from our collection were used to develop and verify scatter image libraries including isolates from food, environmental and clinical samples.
View Article and Find Full Text PDFLabel-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns.
View Article and Find Full Text PDFBackground: Shiga-toxin producing Escherichia coli (STEC) have emerged as important foodborne pathogens, among which seven serogroups (O26, O45, O103, O111, O121, O145, O157) are most frequently implicated in human infection. The aim was to determine if a light scattering sensor can be used to rapidly identify the colonies of STEC serogroups on selective agar plates.
Methodology/principal Findings: Initially, a total of 37 STEC strains representing seven serovars were grown on four different selective agar media, including sorbitol MacConkey (SMAC), Rainbow Agar O157, BBL CHROMagarO157, and R&F E.
In order to understand the biophysics behind collective behavior of a bacterial colony, a confocal displacement meter was used to measure the profiles of the bacterial colonies, together with a custom built optical density circuits. The system delivered essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony. For example, the aspect ratio of S.
View Article and Find Full Text PDF