Periodontitis is a prevalent inflammatory disease that affects tooth-supporting tissues and is induced by complex polymicrobial dental plaques. Prior treatments, including topical antibiotic ointments, have faced difficulties in tissue permeability issues. Although dissolving microneedle (DMN) has been proposed as a painless and highly efficient transdermal drug delivery system to resolve this challenge, minocycline, widely used for the treatment of periodontitis, is light-sensitive, making it challenging to maintain its stability using conventional fabrication methods.
View Article and Find Full Text PDFThe use of dissolving microneedles (DMNs) is a drug delivery technique in which drug dissolution occurs once it is administered into the skin. The skin is a remarkable site for vaccination due to its significant immunologic properties. Compared to the traditional hypodermic intramuscular (IM) injection, vaccination DMN does not require cold chains and allows for minimal invasive drug delivery.
View Article and Find Full Text PDFBackground: Lidocaine has been widely used as a short-acting local anesthetic agent to reduce the pain caused by needle insertion. Dissolving microneedles (DMNs), which are minimally invasive, can effectively deliver drugs by overcoming the oral mucosal barrier and relieving patient discomfort.
Methods: Lidocaine solution prepared by mixing lidocaine-HCl and hyaluronic acid was used to fabricate oral lidocaine HCl-encapsulated DMNs (oral Li-DMNs) via centrifugal lithography.
Obesity is a chronic metabolic disease that is prevalent worldwide, causing complications that affect the quality of life and longevity of humans. Currently, the low bioavailability upon subcutaneous injection of an appetite suppressant, liraglutide, and health problems in the locally injected region remain to be overcome. In this study, we developed a novel hyaluronic acid-based liraglutide-encapsulated triple-layer microneedle (TLM) as a painless and patient-friendly long-term drug delivery system.
View Article and Find Full Text PDFDissolving microneedles (DMNs), despite their minimally invasive drug administration, face challenges in skin insertion and drug-loading capacity, which lead to less effective drug delivery. The micro-pillar tunnel stamp (MPTS) was designed to enhance the transdermal delivery efficacy of externally provided topical formulations via the creation of microchannels. The tunnel and canal of the MPTS enable the simultaneous application of DMNs and topical drugs.
View Article and Find Full Text PDFLiraglutide, a human glucagon-like peptide-1 (GLP-1) analog, is promising for safely treating type 2 diabetes mellitus (T2DM), compared to insulin, by significantly reducing the risk of glucose-dependent hypoglycemia. Concerns related to injection prevent T2DM patients from taking liraglutide regularly, even though once-a-day subcutaneous (SC) injections. Dissolving microneedles (DMNs) are promising substitutes for SC injection and for improving patient convenience.
View Article and Find Full Text PDFDissolving microneedles (DMNs) are used for minimally invasive transdermal drug delivery. Dissolution of drugs is achieved in the body after skin penetration by DMNs. Unlike injections, the insertion depth of the DMN is an important issue because the amount of dissolved DMN in the skin determines the amount of drug delivered.
View Article and Find Full Text PDFTopical liquid formulations, dissolving microneedles (DMNs), and microscale needles composed of biodegradable materials have been widely used for the transdermal delivery of active compounds for skincare. However, transdermal active compound delivery by topical liquid formulation application is inhibited by skin barriers, and the skincare efficacy of DMNs is restricted by the low encapsulation capacity and incomplete insertion. In this study, topical serum application via a dissolvable micro-channeling system (DMCS) was used to enhance serum delivery through micro-channels embedded with DMNs.
View Article and Find Full Text PDFTeriparatide acetate (TA), which directly promotes bone formation, is subcutaneously injected to treat osteoporosis. In this study, TA with a once-weekly administration regimen was loaded on dissolving microneedles (DMNs) to effectively deliver it to the systemic circulation via the transdermal route. TA activity reduction during the drying process of various TA polymer solutions formulated with hyaluronic acid and trehalose was monitored and homogeneities were assessed.
View Article and Find Full Text PDFBackground: Dissolving microneedle (DMN) is a transdermal drug delivery system that creates pore in the skin and directly deliver drug through the pore channel. DMN is considered as one of the promising system alternatives to injection because it is minimally invasive and free from needle-related issues. However, traditional DMN patch system has limitations of incomplete insertion and need of complex external devices.
View Article and Find Full Text PDFDissolving microneedles (DMNs) have been used as an alternative drug delivery system to deliver therapeutics across the skin barrier in a painless manner. In this study, we propose a novel heat-melting method for the fabrication of hydrophobic poly(lactic-co-glycolic acid) (PLGA) DMNs, without the use of potentially harmful organic solvents. The drug-loaded PLGA mixture, which consisted of a middle layer of the DMN, was optimized and successfully implanted into ex vivo porcine skin.
View Article and Find Full Text PDFChronic inflammatory skin diseases (CISDs) negatively impact a large number of patients. Injection of triamcinolone acetonide (TA), an anti-inflammatory steroid drug, directly into the dermis of diseased skin using needle-syringe systems is a long-established procedure for treating recalcitrant lichenified lesions of CISDs, referred to as TA intralesional injection (TAILI). However, TAILI causes severe pain, causing patients to be stressed and reluctant to undergo treatment.
View Article and Find Full Text PDFAdv Healthc Mater
April 2021
Dissolving microneedles (DMN) supplemented with therapeutic molecules have been developed to enhance transdermal delivery efficiency of topically applied drugs in a minimally invasive manner. However, the dose of the drugs in DMN system is limited owing to the low solubility of drug. In fact, although triamcinolone acetonide (TA) is one of the most widely prescribed drugs for relieving atopic dermatitis (AD), its poor dissolving nature makes it difficult to design and fabricate DMN containing therapeutic dosage of TA.
View Article and Find Full Text PDF(1) Background: Dissolving microneedles (DMNs), a transdermal drug delivery system, have been developed to treat various diseases in a minimally invasive, painless manner. However, the currently available DMNs are based on burst release systems due to their hydrophilic backbone polymer. Although hydrophobic biodegradable polymers have been employed on DMNs for sustained release, dissolution in an organic solvent is required for fabrication of such DMNs.
View Article and Find Full Text PDFLidocaine is a local anesthetic agent used in the form of injection and topical cream. However, these formulation types have limitations of being either painful or slow-acting, thereby hindering effective and complete clinical performance of lidocaine. Dissolving microneedles (DMNs) are used to overcome these limitations owing to their fast onset time and minimally invasive administration methods.
View Article and Find Full Text PDFRecently, numerous transdermal drug delivery systems have been developed for safe and efficient delivery of biopharmaceuticals. Dissolving microneedles (DMNs) are one such drug delivery system, which have been developed to treat a variety of diseases in a minimally invasive manner. However, current DMN fabrication methods involve a reconstitution process of the therapeutics, which can result in degradation of the therapeutics or limited loading capacity for a reasonable application size.
View Article and Find Full Text PDFAndrogenetic alopecia is a common form of scalp hair loss that affects men in their mid-twenties and increases with age. Finasteride (FNS) has been approved and used orally to treat androgenetic alopecia; however, systemic effects on other androgen-dependent tissues cause severe side-effects. To overcome these systemic effects and target hair follicles in the scalp only, numerous topical formulations of FNS have been developed and further combined with the solid microneedle (SMN) technique to create micro-channels in the skin, thus overcoming the skin barrier properties.
View Article and Find Full Text PDFAlopecia, characterized by hair follicle blockage and hair loss, disrupts the normal cycle of hair growth. Although not a life-threatening condition, a growing body of evidence suggests that the psychological state of individuals experiencing alopecia can be highly influenced. Despite considerable research on hair loss treatment, interest in micro-pigmentation has increased in recent decades.
View Article and Find Full Text PDFBackground: Dissolving microneedles (DMNs), microscale needles with a biodegradable polymer matrix, have been widely investigated for transdermal drug delivery. However, the restricted drug loading space of DMNs limited the delivery of the desired quantity of active compounds. In this study, we developed novel combinatorial therapies involving sequential application of adenosine-loaded DMN (Ad-DMN) patches and a topical adenosine-loaded cream (Ad-cream).
View Article and Find Full Text PDFBackground: Dissolving microneedles (DMNs) have been used for skin restoration and wrinkle improvement. Although lipophilic compounds, for example, natural oils or ceramides, enrich the skin barrier, their delivery via DMNs is challenging because of DMN fabrication difficulties.
Objectives: In the present study, we combined a topical formulation and a DMN patch to perform two-phase delivery comprising a lipophilic formulation and hydrophilic compound-loaded DMNs to improve skin barrier status and the efficacy of drug delivery.
Dissolving microneedles (DMNs) have been widely studied in medical applications due to their pain-free administration, superior efficiency, and safe drug delivery. In skin vaccination, preserving the activity of the encapsulated antigen is an important consideration, as antigen activity is lost during DMN fabrication because of various stress factors. These stress factors vary between fabrication methods and each method affects the antigen's activity to different degrees.
View Article and Find Full Text PDFSkin Pharmacol Physiol
September 2018
Background: Horse oil (HO) has skin barrier restoration and skin-moisturizing effects. Although cream formulations have been used widely and safely, their limited penetration through the stratum corneum is a major obstacle to maximizing the cosmetic efficacy of HO. Therefore, we aimed to encapsulate HO in a cosmetic dissolving microneedle (DMN) for efficient transdermal delivery.
View Article and Find Full Text PDFThe interest in alternative material systems and delivery methods for treatment of androgenetic alopecia has been increasing in the recent decades. Topical application of valproic acid (VPA), an FDA-approved anticonvulsant drug, has been shown to effectively stimulate hair follicle (HF) regrowth by upregulating Wnt/β-catenin, a key pathway involved in initiation of HF development. Moreover, a majority of studies have suggested that cutaneous wound re-epithelialization is capable of inducing HF through Wnt/β-catenin pathway.
View Article and Find Full Text PDFDissolving microneedle (DMN) is referred to a microscale needle that encapsulates drug(s) within a biodegradable polymer matrix and delivers it into the skin in a minimally invasive manner. Although vast majority of studies have emphasized DMN as an efficient drug delivery system, the activity of DMN-encapsulated proteins or antigens can be significantly affected due to a series of thermal, physical and chemical stress factors during DMN fabrication process and storage period. The objective of this study is to evaluate the effects of DMN fabrication parameters including polymer type, polymer concentration, fabrication and storage temperature, and drying conditions on the activity of the encapsulated therapeutic proteins by employing lysozyme (LYS) as a model protein.
View Article and Find Full Text PDFDissolving microneedles (DMNs) are microscopic needles capable of delivering encapsulated compounds and releasing them into the skin in a minimally invasive manner. Most studies indicate that encapsulating therapeutics in DMNs is an efficacious approach; however, the importance of evaluating the activity of encapsulated compounds, during the fabrication process, has not been examined in detail. Conducting an analysis of thermal, chemical, and physical stress factors, including temperature, pH, and the interaction of the polymer and therapeutics mixture during preparation, is essential for retaining the activity of encapsulated therapeutics during and after fabrication.
View Article and Find Full Text PDF