Publications by authors named "Huiqun Zhang"

Under the background of new medicine, innovative reform of medical education is mushrooming in Mainland, China. New medicine advocates an innovative training mode supported by medicine + X discipline. In the present study, we made use of the advantages of medical colleges to reform the curriculum of applied psychology and constructed an innovative curriculum system by integrating medicine with psychology.

View Article and Find Full Text PDF

The presence of antibiotics in wastewater poses significant threat to our ecosystems and health. Traditional biological wastewater treatment technologies have several limitations in treating antibiotic-contaminated wastewaters, such as low removal efficiency and poor process resilience. Here, a novel electrochemical-coupled sulfur-mediated biological system was developed for treating wastewater co-contaminated with several antibiotics (e.

View Article and Find Full Text PDF

Diesel, as a toxic and complex pollutant, is one of the main components in oily wastewater, and poses serious threats to the aquatic environment and the health of organisms. Employing environmentally friendly biostimulants to enhance the metabolic functions of microorganisms is currently the optimal choice to improve the biodegradation of oil-containing wastewater efficiency. This study takes Pseudomonas aeruginosa LNR1 as the target, analyzing the physiological responses and molecular mechanisms of biofilm formation when enhanced by the extracellular metabolites of euglena (EME) for diesel degradation.

View Article and Find Full Text PDF

Incomplete mineralization of sulfamethoxazole (SMX) in wastewater treatment systems poses a threat to ecological health. The toxicity and environmental risk associated with SMX biodegradation in the sulfur-mediated biological process were examined for the first time through a long-term (180 days) bioreactor study and a series of bioassays. The results indicated that the sulfur-mediated biological system was highly resistant and tolerant to SMX toxicity, as evidenced by the enrichment of sulfate-reducing bacteria (SRB), the improved microbial metabolic activity, and the excellent performance on pollutants removal under long-term SMX exposure.

View Article and Find Full Text PDF

Incomplete mineralization of antibiotics in biological sludge systems poses a risk to the environment. In this study, the toxicity associated with ciprofloxacin (CIP) biodegradation in activated sludge (AS), anaerobic methanogenic sludge (AnMS), and sulfur-mediated sludge (SmS) systems was examined via long-term bioreactor tests and a series of bioassays. The AS and AnMS systems were susceptible to CIP and its biotransformation products (TPs) and exhibited performance deterioration, while the SmS system exhibited high tolerance against the toxicity of CIP and its TPs along with excellent pollutant removal.

View Article and Find Full Text PDF

Microplastics are ubiquitous in estuaries, coasts, sewage and wastewater treatment plants (WWTPs), which could arouse unexpected effects on critical microbial processes in wastewater treatment. In this study, polyethylene terephthalate microplastics (PET-MPs) were selected to investigate the mechanism of its influence on the performance of sulfur-mediated biological process from the perspective of microbial metabolic activity, electron transfer capacity and microbial community. The results indicated that the exposure of 50 particles/L PET-MPs improved the chemical oxygen demand (COD) and sulfate removal efficiencies by 6.

View Article and Find Full Text PDF

Ibuprofen (IBU), a common non-steroidal anti-inflammatory drug (NSAID), is widely used by humans for controlling fever and pain, and is frequently detected in the influent of wastewater treatment plants and different aquatic environments. In this study, the biotransformation of IBU in activated sludge (AS), anaerobic methanogenic sludge (AnMS) and sulfate-reducing bacteria (SRB)-enriched sludge systems was investigated at three different concentrations of 100, 500 and 1000 μg/L via a series of batch and continuous studies. IBU at concentration of 100 μg/L was effectively biodegraded by AS whereas AnMS and SRB-enriched sludge were less effective in IBU biodegradation at all concentrations tested.

View Article and Find Full Text PDF

The activated sludge (AS) and sulfate-reducing bacteria (SRB) sludge systems were continuously operated for 200 days in laboratory to investigate the stress-responses of these two sludge systems under ciprofloxacin (CIP) exposure. It was found that CIP was effectively removed by SRB sludge via adsorption and biodegradation, but little biodegradation in AS system. The CIP biodegradation by SRB sludge made the SRB sludge system more sustainable and tolerant to long-term CIP exposure than AS system with significant (p < 0.

View Article and Find Full Text PDF

Antibiotics, the most frequently prescribed drugs of modern medicine, are extensively used for both human and veterinary applications. Antibiotics from different wastewater sources (e.g.

View Article and Find Full Text PDF

In this study, we examined eight typical and widely detected pharmaceuticals (PhAs) removal in an anaerobic sulfate-reducing bacteria (SRB) sludge system (five antibiotics: sulfadiazine (SD), sulfamethoxazole (SMX), trimethoprim (TMP), ciprofloxacin (CIP) and enoxacin (ENO), and three nonsteroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), ketoprofen (KET) and diclofenac (DIC)). The results showed that the SRB sludge had the higher removal efficacy (20 to 90%) for antibiotics (SD, SMX, TMP, CIP and ENO) than NSAIDs (<20%) via adsorption and biodegradation under different operating conditions. Based on a series of batch studies, fluoroquinolone antibiotics (CIP and ENO) were instantly (<15 min) removed (∼98%) via adsorption on SRB sludge with adsorption coefficient (K) as high as 25.

View Article and Find Full Text PDF

is an important human pathogen which uses the type III secretion system (T3SS) as a primary virulence factor to establish infections in humans. The results presented in this report revealed that the ATP-binding protein PA4595 (named ArtR, a Regulator that is an ATP-activated Repressor of T3SS) represses T3SS expression in . The expression of T3SS genes, including , , , and -, increased significantly when was knockout.

View Article and Find Full Text PDF

Topoisomerases are required for alleviating supercoiling of DNA during transcription and replication. Recent evidence suggests that supercoiling of bacterial DNA can affect bacterial pathogenicity. To understand the potential regulatory role of a topoisomerase I (TopA) in we investigated a previously isolated mutation using genetic approaches.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) in microbial sludge, fulfils a key role in removal of micro-organic pollutants during biological wastewater treatment. In this study, the authors evaluated the removal of ciprofloxacin (CIP) by sulfate-reducing bacteria (SRB) sludge in a sulfate-reducing up-flow sludge bed (SRUSB) reactor, and examined the role of EPS on CIP removal in an SRB sludge system. The results indicated that CIP was removed efficiently through adsorption and biodegradation by SRB sludge, with adsorption the major removal pathway.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) of microbial sludge play a crucial role in removal of organic micropollutants during biological wastewater treatment. In this study, we examined ciprofloxacin (CIP) removal in three parallel bench-scale reactors using aerobic sludge (AS), anaerobic sludge (AnS), and sulfate-reducing bacteria (SRB) sludge. The results showed that the SRB sludge had the highest specific CIP removal rate via adsorption and biodegradation.

View Article and Find Full Text PDF
Article Synopsis
  • Ciprofloxacin (CIP), an antibiotic, showed a 28.0% biodegradation rate in an anaerobic sulfate-reducing bacteria (SRB) sludge system when tested at a concentration of 5000 μg/L.
  • Some SRB genera, particularly Desulfobacter, displayed significant tolerance to CIP, indicating possible adaptations to the antibiotic's presence.
  • The study uncovered new mechanisms of CIP biodegradation, including efflux pump genes that help reduce antibiotic resistance, and highlighted degradation pathways involving intracellular reactions with cytochrome P450 enzymes.
View Article and Find Full Text PDF

Sulfamethoxazole (SMX) is one of the most commonly used antibiotics. SMX degradation in sulfate-reducing bacteria (SRB) sludge systems has not been reported so far. This research investigated the SMX degradation using SRB sludge in a sulfate-reducing up-flow sludge bed reactor.

View Article and Find Full Text PDF

A rapid and simple high-performance liquid chromatography-UV method was developed for the separation and quantification of salbutamol, ractopamine, and clenbuterol in pork. A mixture of acetonitrile-formic acid-ammonium acetate was used as the mobile phase to separate three β-agonists on a C18 column with gradient. The effects of the addition of formic acid and ammonium acetate to mobile phases on the separation of β-agonists were investigated.

View Article and Find Full Text PDF