Publications by authors named "Huiqing Cao"

Objective: The complement cascade plays an important role in the inflammation amplification and tissue destruction of periodontitis. Importantly, complement C3 was proved to be the central element of complement cascade. Thus, targeting inhibition of C3 has become one of the focuses of treatment method development and exploration.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the clinical features and underlying causes of KMT2B variants in Chinese children with dystonia or developmental delay, analyzing data from 27 patients.
  • A significant majority (26 patients) had various forms of dystonia, often worsened by factors like fever, and some also experienced additional movement disorders and developmental delays.
  • The research found 26 unique pathogenic KMT2B variants, with many linked to mitochondrial dysfunction, impacting cellular respiration and mitochondrial structure in patient fibroblasts.
View Article and Find Full Text PDF

Many long noncoding RNAs (lncRNAs) have been identified through siRNA-based screening as essential regulators of embryonic stem cell (ESC) pluripotency. However, the biological and molecular functions of most lncRNAs remain unclear. Here, we employed CRISPR/Cas9-mediated knockout technology to explore the functions of 8 lncRNAs previously reported to promote pluripotency in mouse ESCs.

View Article and Find Full Text PDF

Drought is the abiotic factor that adversely affects plant growth, development survival, and crop productivity, posing a substantial threat to sustainable agriculture worldwide, especially in warm and dry areas. However, the extent of damage depends upon the crop growth stage, severity and frequency of the stress. In general, the reproductive growth phase is more sensitive to stresses causing a substantial loss in crop productivity.

View Article and Find Full Text PDF

Background: The high morbidity and mortality of calcific aortic valve disease (CAVD) represents an unmet clinical need to investigate the molecular mechanisms involved. Evidence suggests that long non-coding RNAs (lncRNAs) can act as competitive endogenous RNAs (ceRNAs) by binding to microRNAs and regulating target genes in cardiovascular diseases. Nevertheless, the role of lncRNAs related ceRNA regulation in CAVD remains unclear.

View Article and Find Full Text PDF

This study investigates the slugging characteristics of the gas-liquid slug flow interface in horizontal pipes. Using air and water as the experimental media, an experimental system was established using double-parallel conductance probes in a pipe with an inner diameter of 5 cm. By capturing the transient development process of the gas-liquid interface, the slugging characteristics of the gas-liquid two-phase flow interface in different flow regions were revealed.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are critical regulators of inflammation with great potential as new therapeutic targets. However, the role of lncRNAs in early atherosclerosis remains poorly characterized. This study aimed to identify the key lncRNA players in activated endothelial cells (ECs).

View Article and Find Full Text PDF
Article Synopsis
  • KLF17 is crucial for maintaining the naive pluripotent state of human embryonic stem cells (hESCs) and facilitates the transition from a primed to a naive state.
  • Research identifies MAPK3 and ZIC2 as two transcriptional targets that KLF17 represses, which is key to its role in promoting naive pluripotency.
  • The study implies that KLF17 is not only important for hESCs but also plays a significant role in early mouse embryo development, indicating conserved functions across species.
View Article and Find Full Text PDF

In eukaryotes, N6-methyladenosine (mA) is one of the most abundant modifications on RNAs, and it plays important roles in many biological processes and diseases such as cancer. While most mA researches focus on message RNAs and long non-coding RNAs, recent studies have reported the presence of mA in small RNAs. Nevertheless, current knowledge about mA prevalence in mature microRNAs (miRNA) is extremely limited and the functional significance of mA methylation in miRNAs remains to be elucidated.

View Article and Find Full Text PDF

Efficient endosomal escape is the most essential but challenging issue for siRNA drug development. Herein, a series of quaternary ammonium-based amphiphilic triblock polymers harnessing an elaborately tailored pH-sensitive hydrophobic core were synthesized and screened. Upon incubating in an endosomal pH environment (pH 6.

View Article and Find Full Text PDF

pH-sensitive hydrophobic segments have been certificated to facilitate siRNA delivery efficiency of amphiphilic polycation vehicles. However, optimal design concepts for these vehicles remain unclear. Herein, by studying the library of amphiphilic polycations mPEG-PAMA-P(DEA--D5A) (EAE5), we concluded a multifactor matching concept (p values, "proton buffering capacities" (BCs), and critical micelle concentrations (CMCs)) for polycation vehicles to improve siRNA delivery efficiency and .

View Article and Find Full Text PDF

Objectives: Mouse embryonic stem cell (mESC) culture contains various heterogeneous populations, which serve as excellent models to study gene regulation in early embryo development. The heterogeneity is typically defined by transcriptional activities, for example, the expression of Nanog or Rex1 mRNA. Our objectives were to identify mESC heterogeneity that are caused by mechanisms other than transcriptional control.

View Article and Find Full Text PDF

mRNA is a novel class of therapeutic modality that holds great promise in vaccination, protein replacement therapy, cancer immunotherapy, immune cell engineering However, optimization of mRNA molecules and efficient delivery are quite important but challenging for its broad application. Here we present an ionizable lipid nanoparticle (iLNP) based on iBL0713 lipid for and expression of desired proteins using codon-optimized mRNAs. mRNAs encoding luciferase or erythropoietin (EPO) were prepared by transcription and formulated with proposed iLNP, to form iLP171/mRNA formulations.

View Article and Find Full Text PDF

Background: Circulating microRNAs (miRNA) are potential prognostic biomarkers for cardiovascular disease. We aimed to identify serum miRNA as an effective predictor for coronary artery disease (CAD) events in a general population cohort.

Methods and results: Serum miRNAs associated with CAD were determined by small RNA sequencing and quantitative RT-PCR.

View Article and Find Full Text PDF

The purpose of this study was to assess the association of blood pressure (BP) measurements with the risk of cardiovascular disease (CVD) and examine whether central systolic BP (CSBP) predicts CVD better than brachial BP measurements (SBP and pulse pressure [PP]). Based on a cross-sectional study conducted in 2009-2010 with follow-up in 2016-2017 among 35- to 64-year-old subjects in China, we evaluated the performance of non-invasively predicted CSBP over brachial BP measurements on the first CVD events. Each BP measurement, individually and jointly with another BP measurement, was entered into the multivariate Cox proportional-hazards models, to examine the predictability of central and brachial BP measurements.

View Article and Find Full Text PDF

The DiGeorge syndrome critical region gene 8 (Dgcr8) knockout strategy has been widely used to study the function of canonical microRNAs (miRNAs) in vitro and in vivo. However, primary miRNA (pri-miRNA) transcripts are accumulated in Dgcr8 knockout cells due to interrupted processing. Whether abnormally accumulated pri-miRNAs have any function is unknown.

View Article and Find Full Text PDF

Background: MicroRNAs contribute to chemotherapy response in different types of cancer. We hypothesized that plasma miRNAs are potentially associated with chemotherapy response in patients with metastatic breast cancer.

Patients And Methods: Fourteen candidate microRNAs were chosen from the literature, and their plasma levels were measured by quantitative polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Improving siRNA delivery efficiency often encounters a dilemma with poor or decreased biocompatibility for polycationic micelles. To address this dilemma, this work focused on a structural exploration of the hydrophobic core in amphiphilic polycationic micelles by preparing two amphiphilic polycations with block or random hydrophobic segments, poly(ethylene glycol)-block-poly(aminoethyl methacrylate)-block-poly(2-diamylamine ethyl methacrylate)-block-poly(2-diethylamine ethyl methacrylate) (mPEG-PAMA-PD5A-PDEA, PADE) and poly(ethylene glycol)-block-poly(aminoethyl methacrylate)-block-poly(2-diamylamine ethyl methacrylate-co-2-diethylamine ethyl methacrylate) (mPEG-PAMA-P(D5A/DEA), PA(D/E)). The properties of the two copolymers and their self-assembly micelles were characterized, including structure, morphology, size and zeta potential.

View Article and Find Full Text PDF

Tri-block copolymers have exhibited great potentials in small interfering RNA (siRNA) therapeutics. To reveal structure-activity relationships, we here synthesized a series of tri-block copolymers with different hydrophobic segments, PEG-PAMA-P(C6A-C7A-DPA-DBA) (EAAS) and PEG-PDAMAEMA-P(C6A-C7A-DPA-DBA) (EDAS), termed from EAASa to EAASh and EDASa to EDASh, with pKa ranging from 5.2 to 7.

View Article and Find Full Text PDF

Delivery of nucleic acid molecules into skin remains a main obstacle for various types of gene therapy or vaccine applications. Here we propose a novel electroporation approach combined use of a microneedle roller and a flexible interdigitated electroporation array (FIEA) for efficient delivery of DNA and siRNA into mouse skin. Using micromachining technology, closely spaced gold electrodes were made on a pliable parylene substrate to form a patch-like electroporation array, which enabled close surface contact between the skin and electrodes.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a common metabolic disease influenced by both genetic and environmental factors. In this study, we performed an in-house genotyping and meta-analysis study using three independent GWAS datasets of T2DM and found that rs3743121, located 1 kb downstream of AQR, was a novel susceptibility SNP associated with T2DM. The risk allele C of rs3743121 was correlated with the increased expression of AQR in white blood cells, similar to that observed in T2DM models.

View Article and Find Full Text PDF

Rapid progress has been made toward small interfering RNA (siRNA)-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodified strand of siRNAs but were well tolerated by the modified strand.

View Article and Find Full Text PDF

Heart failure (HF) is associated with mitochondrial dysfunction and energy metabolism impairment. MicroRNAs are implicated in the development of heart failure. However, the mitochondria enriched microRNA during heart failure remains elusive.

View Article and Find Full Text PDF

Polycations are generally used to work as delivery vector to develop siRNA-based therapy for gene-related diseases. The contradiction between inevitable toxicity, internalization, and pharmacokinetics of polycations/siRNA is a critical challenge for polycations and impedes their further application. Herein, we synthesized the ECMD polycations and constructed ECMD/siRNA/HA complexes with slight negative charge to address the above mentioned issue.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) therapies have been hampered by lack of delivery systems in the past decades. Nowadays, a few promising vehicles for siRNA delivery have been developed and it is gradually revealed that enhancing siRNA release from endosomes into cytosol is a very important factor for successful delivery. Here, we designed a novel pH-sensitive nanomicelle, PEG-PTTMA-P(GMA-S-DMA) (PTMS), for siRNA delivery.

View Article and Find Full Text PDF