Publications by authors named "Huiqian Luo"

The vortex core can be regarded as a nanoscale confined system for quasiparticles in a type-II superconductor. It is very interesting to investigate the interplay between the vortex core and other microscopic quantum confined systems. We observe band-like canals with the width of about 15 nm on the surface of KCa(FeNi)AsF ( = 0.

View Article and Find Full Text PDF

We performed magnetization measurements in a single crystal of the anisotropic bilayer pnictide superconductor KCa[Formula: see text]Fe[Formula: see text]As[Formula: see text]F[Formula: see text], with [Formula: see text] [Formula: see text] 34 K, for [Formula: see text] [Formula: see text] [Formula: see text]-axis and [Formula: see text] [Formula: see text] [Formula: see text]-planes. A second magnetization peak (SMP) was observed in the isothermal M(H) curves measured below 16 K for [Formula: see text] [Formula: see text] [Formula: see text]-planes. A peak in the temperature variation of the critical current density, [Formula: see text](T), at 16 K, strongly suggests the emergence of Josephson vortices at lower temperatures, which leads to the SMP in the sample.

View Article and Find Full Text PDF

We report time-of-flight inelastic neutron scattering (INS) investigations on the spin fluctuation spectrum in the 112-type iron-based superconductor (FeSC) CaLaFeNiAs(CaLa-112). In comparison to the 122-type FeSCs with a centrosymmetric tetragonal lattice structure (space groupI4/mmm) at room temperature and an in-plane stripe-type antiferromagnetic (AF) order at low temperature, the 112 system has a noncentrosymmetric structure (space groupP21) with additional zigzag arsenic chains between Ca/La layers and a magnetic ground state with similar wavevectorQAFbut different orientations of ordered moments in the parent compounds. Our INS study clearly reveals that the in-plane dispersions and the bandwidth of spin excitations in the superconducting CaLa-112 closely resemble to those in 122 systems.

View Article and Find Full Text PDF

In materials science, much effort has been devoted to the reproduction of superconductivity in chemical compositions, analogous to cuprate superconductors since their discovery over 30 years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest that infinite-layer nickelates have a propensity towards various symmetry-breaking orders that populate cuprates.

View Article and Find Full Text PDF

Overshadowing the superconducting dome in hole-doped cuprates, the pseudogap state is still one of the mysteries that no consensus can be achieved. It has been suggested that the rotational symmetry is broken in this state and may result in a nematic phase transition, whose temperature seems to coincide with the onset temperature of the pseudogap stateT∗around optimal doping level, raising the question whether the pseudogap results from the establishment of the nematic order. Here we report results of resistivity measurements under uniaxial pressure on several hole-doped cuprates, where the normalized slope of the elastoresistivitycan be obtained as illustrated in iron-based superconductors.

View Article and Find Full Text PDF

Spin-orbit coupling (SOC) is a key to understand the magnetically driven superconductivity in iron-based superconductors, where both local and itinerant electrons are present and the orbital angular momentum is not completely quenched. Here, we report a neutron scattering study on the bilayer compound CaK(Fe_{0.96}Ni_{0.

View Article and Find Full Text PDF

We report the observation of discrete bound states with the energy levels deviating from the widely believed ratio of 1∶3∶5 in the vortices of an iron-based superconductor KCa_{2}Fe_{4}As_{4}F_{2} through scanning tunneling microscopy (STM). Meanwhile Friedel oscillations of vortex bound states are also observed for the first time in related vortices. By doing self-consistent calculations of Bogoliubov-de Gennes equations, we find that at extreme quantum limit, the superconducting order parameter exhibits a Friedel-like oscillation, which modifies the energy levels of the vortex bound states and explains why it deviates from the ratio of 1∶3∶5.

View Article and Find Full Text PDF

Sr_{2}CuTeO_{6} is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S=1/2 Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes have predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a study of Sr_{2}CuTe_{1-x}W_{x}O_{6} using neutron diffraction and μSR techniques, showing that the Néel order vanishes already at x=0.

View Article and Find Full Text PDF

The neutron spin resonance is generally regarded as a key to understanding the magnetically mediated Cooper pairing in unconventional superconductors. Here, we report an inelastic neutron scattering study on the low-energy spin excitations in a quasi-two-dimensional iron-based superconductor KCa_{2}Fe_{4}As_{4}F_{2}. We have discovered a two-dimensional spin resonant mode with downward dispersions, a behavior closely resembling the low branch of the hourglass-type spin resonance in cuprates.

View Article and Find Full Text PDF

Mn-based ZrCuSiAs-type pnictides ThMnPnN (Pn = P, As) containing PbO-type ThN layers were synthesized. The crystal and magnetic structures are determined using X-ray and neutron powder diffraction. While neutron diffraction indicates a C-type antiferromagnetic state at 300 K, the temperature dependence of the magnetic susceptibility shows cusps at 36 and 52 K respectively for ThMnPN and ThMnAsN.

View Article and Find Full Text PDF

We have systematically studied physical properties of Ba(Fe_{0.97}Cr_{0.03})_{2}(As_{1-x}P_{x})_{2}, where superconductivity in BaFe_{2}(As_{1-x}P_{x})_{2} is fully suppressed by just 3% of Cr substitution of Fe.

View Article and Find Full Text PDF

Understanding magnetic interactions in the parent compounds of high-temperature superconductors forms the basis for determining their role for the mechanism of superconductivity. For parent compounds of iron pnictide superconductors such as AFe_{2}As_{2} (A=Ba, Ca, Sr), although spin excitations have been mapped out throughout the entire Brillouin zone, the respective measurements were carried out on twinned samples and did not allow for a conclusive determination of the spin dynamics. Here we use inelastic neutron scattering to completely map out spin excitations of ∼100% detwinned BaFe_{2}As_{2}.

View Article and Find Full Text PDF

We report an inelastic neutron scattering study on the spin resonance in the bilayer iron-based superconductor CaKFe_{4}As_{4}. In contrast to its quasi-two-dimensional electron structure, three strongly L-dependent modes of spin resonance are found below T_{c}=35  K. The mode energies are below and linearly scale with the total superconducting gaps summed on the nesting hole and electron pockets, essentially in agreement with the results in cuprate and heavy fermion superconductors.

View Article and Find Full Text PDF

We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca_{0.82}La_{0.18}Fe_{0.

View Article and Find Full Text PDF

Chemical substitution during growth is a well-established method to manipulate electronic states of quantum materials, and leads to rich spectra of phase diagrams in cuprate and iron-based superconductors. Here we report a novel and generic strategy to achieve nonvolatile electron doping in series of (i.e.

View Article and Find Full Text PDF

High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the antiferromagnetic states of iron-arsenide superconductors AFe_{2}As_{2} (with A being Ba or Sr) under high magnetic fields, observing optical transitions that suggest the presence of massless Dirac fermions, especially in BaFe_{2}As_{2}.
  • - Key findings include a dependence of transition energies on the square root of the magnetic field strength, indicating unique electronic properties, and the identification of two-dimensional massless Dirac fermions in the material.
  • - Substituting all barium with strontium in BaFe_{2}As_{2} not only preserves these 2D massless Dirac fermions but also increases their
View Article and Find Full Text PDF

The origin of nematic order remains one of the major debates in iron-based superconductors. In theories based on spin nematicity, one major prediction is that the spin-spin correlation length at (0,π) should decrease with decreasing temperature below the structural transition temperature T_{s}. Here, we report inelastic neutron scattering studies on the low-energy spin fluctuations in BaFe_{1.

View Article and Find Full Text PDF

We have systematically studied the nematic fluctuations in the electron-doped iron-based superconductor BaFe_{2-x}Ni_{x}As_{2} by measuring the in-plane resistance change under uniaxial pressure. While the nematic quantum critical point can be identified through the measurements along the (110) direction, as studied previously, quantum and thermal critical fluctuations cannot be distinguished due to similar Curie-Weiss-like behaviors. Here we find that a sizable pressure-dependent resistivity along the (100) direction is present in all doping levels, which is against the simple picture of an Ising-type nematic model.

View Article and Find Full Text PDF

Raman scattering can detect spontaneous point-group symmetry breaking without resorting to single-domain samples. Here, we use this technique to study BaFe(2)As(2), the parent compound of the "122" Fe-based superconductors. We show that an applied compression along the Fe-Fe direction, which is commonly used to produce untwinned orthorhombic samples, changes the structural phase transition at temperature T(s) into a crossover that spans a considerable temperature range above T(s).

View Article and Find Full Text PDF

The incommensurate modulated structure (IMS) of Bi2Sr1.6La0.4CuO6+δ (BSLCO) has been studied by aberration-corrected transmission electron microscopy in combination with a high-dimensional (HD) space description.

View Article and Find Full Text PDF

We use nuclear magnetic resonance (NMR), high-resolution x-ray, and neutron scattering studies to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As(1-x)P(x)2. Previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x=0.3.

View Article and Find Full Text PDF

We use polarized neutron scattering to demonstrate that in-plane spin excitations in electron doped superconducting BaFe1.904Ni0.096As2 (Tc=19.

View Article and Find Full Text PDF

Understanding the microscopic origins of electronic phases in high-transition temperature (high-T(c)) superconductors is important for elucidating the mechanism of superconductivity. In the paramagnetic tetragonal phase of BaFe(2-x)T(x)As2 (where T is Co or Ni) iron pnictides, an in-plane resistivity anisotropy has been observed. Here, we use inelastic neutron scattering to show that low-energy spin excitations in these materials change from fourfold symmetric to twofold symmetric at temperatures corresponding to the onset of the in-plane resistivity anisotropy.

View Article and Find Full Text PDF

High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe₂As₂ parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies.

View Article and Find Full Text PDF