Clin Rev Allergy Immunol
February 2025
Autoimmune diseases are characterized by immune dysregulation, resulting in aberrant reactivity of T cells and antibodies to self-antigens, leading to various patterns of inflammation and organ dysfunction. However, current therapeutic agents exhibit broad-spectrum activity and lack disease-specific selectivity, leading to enduring adverse effects, notably severe infections, and malignancies, and patients often fail to achieve the intended clinical goals. Mesenchymal stromal cells (MSCs) are multipotent stromal cells that can be easily derived from various tissues, such as adipose tissue, umbilical cords, Wharton's jelly, placenta, and dental tissues.
View Article and Find Full Text PDFThe cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction.
View Article and Find Full Text PDFSignal Transduct Target Ther
November 2024
Genetic variants of the OX40 ligand (OX40L) locus are associated with the risk of systemic lupus erythematosus (SLE), it is unclear how the OX40L blockade delays the lupus phenotype. Therefore, we examined the effects of an anti-OX40L antibody in MRL/Lpr mice. Next, we investigated the effect of anti-OX40L on immunosuppression in keyhole limpet hemocyanin-immunized C57BL/6J mice.
View Article and Find Full Text PDFCysteinyl leukotriene receptor 1 (CYSLTR1) is observed to increase in psoriatic skin lesions. Montelukast, a CYSLTR1 antagonist, effectively treats inflammatory disorders, such as rheumatoid arthritis, multiple sclerosis, and atopic dermatitis. Thus, blocking CYSLTR1 may be a promising strategy for psoriasis immunotherapy.
View Article and Find Full Text PDFImmune checkpoints (ICs) play a pivotal role in orchestrating immune regulation, crucial for the maintenance of immune tolerance and prevention of autoimmune diseases. One noteworthy example among these immune regulators is T cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT). The TIGIT pathway's inhibition or the absence of TIGIT has been linked to the hyperactivation and excessive proliferation of T cells, rendering individuals more susceptible to autoimmune diseases and exacerbating inflammatory responses.
View Article and Find Full Text PDFObjectives: T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is a newly discovered immune checkpoint (IC) that exhibits immunosuppressive function in the regulation of immune system. Activation of TIGIT signaling has emerged as a promising approach for autoimmune disease immunotherapy, such as systemic lupus erythematosus (SLE).
Methods: We generated a chimeric protein, TIGIT-immunoglobulin (Ig), by fusing the extracellular domain of murine TIGIT to the Fc region of mouse IgG2a, which was used to investigated the effect of activating the TIGIT signaling in murine lupus models (MRL/lpr and chronic graft-versus-host disease mice).
Immune checkpoints (ICs), also referred to as co-inhibitory receptors (IRs), are essential for regulating immune cell function to maintain tolerance and prevent autoimmunity. IRs, such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have been shown to possess immunoregulatory properties that are relevant to various autoimmune diseases and cancers. Tumors are characterized by suppressive microenvironments with elevated levels of IRs on tumor-infiltrating lymphocytes (TILs).
View Article and Find Full Text PDFThe transition from meiotic spermatocytes to postmeiotic haploid germ cells constitutes an essential step in spermatogenesis. The epigenomic regulatory mechanisms underlying this transition remain unclear. Here, we find a prominent transcriptomic switch from the late spermatocytes to the early round spermatids during the meiotic-to-postmeiotic transition, which is associated with robust histone acetylation changes across the genome.
View Article and Find Full Text PDFTranscription factors of the Sox protein family contain a DNA-binding HMG box and are key regulators of progenitor cell fate. Here, we report that expression of Sox30 is restricted to meiotic spermatocytes and postmeiotic haploids. mutant males are sterile owing to spermiogenic arrest at the early round spermatid stage.
View Article and Find Full Text PDF