Publications by authors named "Huimin Xie"

Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related death globally. Also, there is still a lack of effective therapeutic strategies for CRC patients owing to a poor understanding of its pathogenesis. Here, we analysed differentially expressed genes in CRC and identified CPNE7 as a novel driver of colorectal tumorigenesis.

View Article and Find Full Text PDF

Conventional solid-based SERS substrates often face challenges with inconsistent sample distribution, while liquid-based SERS substrates are prone to aggregation and precipitation, resulting in irreproducible signals in both cases. In this study, we tackled this dilemma by designing and synthesizing raspberry-like plasmonic nanoaggregates that exhibit a high density of hotspots and are colloidally stable at the same time. In particular, the nanoaggregates consist of a core made of functionalized polystyrene (PS) microspheres, which act as a template for rapid self-assembly of Au@Ag core-shell nanoparticles to form raspberry-like hierarchical nanoaggregates within 5 min of mixing.

View Article and Find Full Text PDF

Enhancing the efficacy of CD19 CAR-T cell therapy can significantly improve patient outcomes by reducing relapse rates in CD19 + B cell malignancies. Exogenous or transgenic cytokines are often used to boost the expansion and durability of CAR-T cells but pose risks of severe toxicities. A promising approach to address these limitations is to immobilize cytokines on the surface of CAR-T cells using transmembrane (TM) anchor domains.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. Although CRC patients' survival is improved with surgical resection and immunotherapy, metastasis and recurrence remain major problems leading to poor prognosis. Therefore, exploring pathogenesis and identifying specific biomarkers are crucial for CRC early diagnosis and targeted therapy.

View Article and Find Full Text PDF

Two quinoxaline dyes utilized in copper-electrolyte-based dye-sensitized solar cells (Cu-DSSCs) are theoretically investigated to analyze the impact of alkyl chains on dye performance. The investigation shows that ZS4, known for its record efficiency of up to 13.2 %, exhibits higher electron coupling and fewer binding sites for dye-[Cu(tmby)] interaction compared to ZS5.

View Article and Find Full Text PDF

Optofluidic devices hold great promise in biomedical diagnostics and testing because of their advantages of miniaturization, high sensitivity, high throughput, and high scalability. However, conventional silicon-based photonic chips suffer from complicated fabrication processes and less flexibility in functionalization, thus hindering their development of cost-effective biomedical diagnostic devices for daily tests and massive applications in responding to public health crises. In this paper, we present an optofluidic chip based on directly printed polymer optical waveguide Mach-Zehnder interferometer (MZI) sensors for label-free biomarker detection.

View Article and Find Full Text PDF

Human dental pulp stem cells (DPSCs) have become an important component for bone tissue engineering and regenerative medicine due to their ability to differentiate into osteoblast precursors. Two miRNA chip datasets (GSE138180 and E-MTAB-3077) of DPSCs osteogenic differentiation were analyzed respectively to find the expression of miR-483-3p significantly increased in the differentiated groups. We further confirmed that miR-483-3p continued to overexpress during osteogenic differentiation of DPSCs, especially reaching its peak on the 7th day.

View Article and Find Full Text PDF

Photoelectrochemical (PEC) cells provide a promising solution for the synthesis of hydrogen peroxide (HO). Herein, an integrated photocathode of p-type BiVO (p-BVO) array with tetragonal zircon structure coupled with different metal oxide (MO, M = Sn, Ti, Ni, and Zn) heterostructure and NiNC cocatalyst (p-BVO/MO/NiNC) was synthesized for the PEC oxygen reduction reaction (ORR) in production of HO. The p-BVO/SnO/NiNC array achieves the production rate 65.

View Article and Find Full Text PDF

Nerve injury often leads to severe dysfunction because of the lack of axon regeneration in adult mammal. Intriguingly a series of extracellular vesicles (EVs) have the obvious ability to accelerate the nerve repair. However, the detailed molecular mechanisms to describe that EVs switch neuron from a transmitter to a regenerative state have not been elucidated.

View Article and Find Full Text PDF

Microplastics (MPs) and antibiotics are novel water pollutants that have attracted increasing attention. Constructed wetlands (CWs) are widely applied treating various types of polluted water. How these two new pollutants affect plants and microorganisms in CWs, especially deciphering the unknown roles of MPs size and concentration, is of great essential.

View Article and Find Full Text PDF

Regulation of charge transport at the molecular level is essential to elucidating the kinetics of junction photoelectrodes across the heterointerface for photoelectrochemical (PEC) water oxidation. Herein, an integrated photoanode as the prototype was constructed by use of a 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin-cobalt molecule (CoTCPP) and ZnO on hematite (α-FeO) photoanode. CoTCPP molecules serve as a typical hole transport layer (HTL), accelerating the transport of the photogenerated holes to oxygen evolution cocatalysts (OECs).

View Article and Find Full Text PDF

Background: The effects of subthalamic nucleus deep brain stimulation (STN-DBS) on the cognition and mood of patients with PD are still not uniformly concluded, and young-onset Parkinson's disease (YOPD) is even less explored.

Objective: To observe the effectiveness of STN-DBS on the cognition and mood of YOPD patients.

Methods: A total of 27 subjects, with a mean age at onset of 39.

View Article and Find Full Text PDF

Zwitterionic polymer coatings facilitate the formation of hydration layers via electrostatic interactions on their surfaces and have demonstrated efficacy in preventing biofouling. They have emerged as a promising class of marine antifouling materials. However, designing multifunctional, environmentally friendly, and natural products-derived zwitterionic polymer coatings that simultaneously resist biofouling, inhibit protein adhesion, exhibit strong antibacterial properties, and reduce algal adhesion is a significant challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Exosomes play a vital role in biological processes such as promoting axonal regeneration and aiding recovery after nerve injuries.
  • This study focused on the role of the lncRNA-microRNA-mRNA competitive endogenous RNA network in exosomes from fibroblasts (FC-EXOs) and Schwann cells (SC-EXOs).
  • The research highlighted that Rps5, a gene enriched in both types of exosomes, may help in preventing scar formation and enhancing axonal regeneration, indicating potential therapeutic applications for peripheral nerve injuries.
View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS) is a common inflammatory arthritis without a reliable biomarker. The role of methylation and mRNA expression of PRICKLE1 promoter in the pathogenesis of ankylosing spondylitis remains unclear.

Methods: A two-stage case-control design was used to detect the characteristics of methyl group and transcriptome of PRICKLE1 gene in Ankylosing spondylitis.

View Article and Find Full Text PDF

CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases. CD36 was recently found to be widely expressed in various cell types in the nervous system, including endothelial cells, pericytes, astrocytes, and microglia. CD36 mediates a number of regulatory processes, such as endothelial dysfunction, oxidative stress, mitochondrial dysfunction, and inflammatory responses, which are involved in many central nervous system diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and spinal cord injury.

View Article and Find Full Text PDF

Background: The temporomandibular joint (TMJ) is a complex joint consisting of the condyle, the temporal articular surface, and the articular disc. Functions such as mastication, swallowing and articulation are accomplished by the movements of the TMJ. To date, the TMJ has been studied more extensively, but the types of TMJ cells, their differentiation, and their interrelationship during growth and development are still unclear and the study of the TMJ is limited.

View Article and Find Full Text PDF

The mechanical properties of micro- and nanoscale materials directly determine the reliability of heterostructures, microstructures, and microdevices. Therefore, an accurate evaluation of the 3D strain field at the nanoscale is important. In this study, a scanning transmission electron microscopy (STEM) moiré depth sectioning method is proposed.

View Article and Find Full Text PDF

Sluggish oxygen evolution kinetics and serious charge recombination restrict the development of photoelectrochemical (PEC) water splitting. The advancement of novel metal-organic frameworks (MOFs) catalysts bears practical significance for improving PEC water splitting performance. Herein, a MOF glass catalyst through melting glass-forming cobalt-based zeolitic imidazolate framework (Co-a ZIF-62) was introduced on various metal oxide (MO: Fe O , WO and BiVO ) semiconductor substrates coupled with NiO hole transport layer, constructing the integrated Co-a ZIF-62/NiO/MO photoanodes.

View Article and Find Full Text PDF

This study investigated the effect of biochar on real domestic wastewater treatment by constructed wetlands (CWs). To evaluate the role of biochar as a substrate and electron transfer medium on nitrogen transformation, three treatments of CW microcosms were established: conventional substrate (T1), biochar substrate (T2), and biochar-mediated electron transfer (T3). Nitrogen removal increased from 74% in T1 to 77.

View Article and Find Full Text PDF

To establish a risk prediction model and make individualized assessment for the susceptible diabetic retinopathy (DR) population in type 2 diabetic mellitus (T2DM) patients. According to the retrieval strategy, inclusion and exclusion criteria, the relevant meta-analyses on DR risk factors were searched and evaluated. The pooled odds ratio (OR) or relative risk (RR) of each risk factor was obtained and calculated for β coefficients using logistic regression (LR) model.

View Article and Find Full Text PDF

It is important to remove active substances from secondary aluminum dross (SAD) to meet the reuse of SAD. In this work, the removal of active substances from different particle sizes of SAD was studied using roasting improvement with particle sorting. The results showed that roasting after particle sorting pretreatment can effectively remove fluoride and aluminum nitride (AlN) from SAD, while getting the high-grade alumina (AlO) crude materials.

View Article and Find Full Text PDF

Pyrolysis is an important technology to achieve the harmlessness and recycling of contaminated biomass. In this study, the effects of oxygen-controlled atmosphere on the component properties and heavy metal accumulation characteristics of contaminated rice straw biochar were studied. The results showed that low-oxygen pyrolysis could effectively produce biochar using contaminated rice straw and improve the stability of heavy metals in biochar.

View Article and Find Full Text PDF

The interface plays an important role in determining strength and toughness in multiphase systems and the accurate measurement of the interface structure in single crystal (SX) Ni-based superalloy is also essential. In this work, the γ and γ' lattice constant, γ/γ' interface width at dendritic and interdendritic region of casting and solution treatment SX Ni-based superalloy is measured. Various advanced equipment is used to characterize γ/γ' interface nanostructure.

View Article and Find Full Text PDF

The fatigue damage assessment of laser-repaired components is critical to their service safety. However, since laser repairing is an advanced green remanufacturing technology, the current research on its fatigue mechanical behavior and fatigue damage evaluation methods is still immature. In addition, the relevant models used for the fatigue damage evaluation can only indicate the fatigue limit of components, which cannot describe the damage accumulation process of the components during the fatigue testing.

View Article and Find Full Text PDF