The modification of tryptophan hydroxylase (TPH) for the biosynthesis of 5-hydroxytryptophan (5-HTP) has recently become a focus of research. In this study, we established a droplet-based ultrahigh-throughput microfluidic screening platform (DTSP) to improve the industrial properties of TPH, whereas a bacterial biosensor for L-tryptophan (L-Trp) detection was engineered to improve sensitivity. The promoter pJ23111 achieved a strong negative correlation between the L-Trp concentration and the fluorescence output of the biosensor.
View Article and Find Full Text PDFDouble B-box (DBB) proteins are plant-specific transcription factors (TFs) that play crucial roles in plant growth and stress responses. This study investigated the classification, structure, conserved motifs, chromosomal locations, cis-elements, duplication events, expression levels, and protein interaction network of the DBB TF family genes in common wheat ( L.).
View Article and Find Full Text PDFXylanases are a class of glycoside hydrolases commonly used in the food, papermaking, and textile industries. However, most xylanases are rapidly inactivated under harsh industrial conditions. Here, a unique and robust GH11 xylanase, AncXyn18, was designed using an ancestral sequence reconstruction strategy, sequence analysis, structure prediction, and experimental verification.
View Article and Find Full Text PDFpolymerization on cell membranes can decrease cell mobility, which may inhibit tumor growth and invasion. However, the initiation of radical polymerization traditionally requires exogenous catalysts or free radical initiators, which might cause side effects in normal tissues. Herein, we synthesized a Y-type diacetylene-containing lipidated peptide amphiphile (TCDA-KFFFFK(GRGDS)-YIGSR, Y-DLPA) targeting integrins and laminin receptors on murine mammary carcinoma 4T1 cells, which underwent nanoparticle-to-nanofiber morphological transformation and polymerization on cell membranes.
View Article and Find Full Text PDF17α-Hydroxyprogesterone (17α-OHP) is a steroid hormone with significant biological activity that can be obtained by catalyzing progesterone (PROG), the main product of sitosterol, through CYP17A1. However, increasing the catalytic specificity of HCYP17A1 for C17 hydroxylation of progesterone (PROG) poses a formidable challenge due to the close proximity of the C16 and C17 positions. In this study, a rational design was utilized to alter the spatial configuration of the substrate channel, leading to the complete abolition of its 16-hydroxylation activity.
View Article and Find Full Text PDFJ Hazard Mater
September 2024
The enzymatic degradation of plastic offers a green, sustainable strategy and scalable circular carbon route for solving polyester waste. Among the earlies discovered plastic-degrading enzymes are PET hydrolase (PETase) and MHET hydrolase (MHETase), which act synergistically. To promote the adsorption of enzymes on PET surfaces, increase their robustness, and enable directly depolymerization, we designed hydrophobin HFBI fused-PETase and MHETase.
View Article and Find Full Text PDFYarrowia lipolytica was successfully engineered to synthesize erythritol from crude glycerol, a cheap by-product of biodiesel production, but the yield remained low. Here, a biosensor-guided adaptive evolution screening platform was constructed to obtain mutant strains which could efficiently utilize crude glycerol to produce erythritol. Erythrose reductase D46A (M1) was identified as a key mutant through whole-genome sequencing of the strain G12, which exhibited higher catalytic activity (1.
View Article and Find Full Text PDFPain is a common public health problem and remains as an unmet medical need. Currently available analgesics usually have limited efficacy or are accompanied by many adverse side effects. To achieve satisfactory pain relief by multimodal analgesia, new combinations of nefopam and gabapentinoids (pregabalin/gabapentin) were designed and assessed in inflammatory, osteoarthritis and neuropathic pain.
View Article and Find Full Text PDF17α-Hydroxyprogesterone (17α-OH-PROG) is an important intermediate with a wide range of applications in the pharmaceutical industry. Strategies based on efficient electron transfer and cofactor regeneration were used for the production of 17α-OH-PROG. Here, CYP260A1, Fpr and Adx were expressed using a double plasmid system, resulting in higher biotransformation efficiency.
View Article and Find Full Text PDFPain, a comorbidity of anxiety disorders, causes substantial clinical, social, and economic burdens. Emerging evidence suggests that propofol, the most commonly used general anesthetic, may regulate psychological disorders; however, its role in pain-associated anxiety is not yet described. This study investigates the therapeutic potential of a single dose of propofol (100 mg kg) in alleviating pain-associated anxiety and examines the underlying neural mechanisms.
View Article and Find Full Text PDFAs the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method.
View Article and Find Full Text PDFHypertrophic scar (HS) considerably affects the appearance and causes tissue dysfunction in patients. The low bioavailability of 5-fluorouracil poses a challenge for HS treatment. Here we show a separating microneedle (MN) consisting of photo-crosslinked GelMA and 5-FuA-Pep-MA prodrug in response to high reactive oxygen species (ROS) levels and overexpression of matrix metalloproteinases (MMPs) in the HS pathological microenvironment.
View Article and Find Full Text PDFDrug-resistant biofilm infection is an extremely serious clinical problem, that easily leads to failure of antibiotic treatment. Although gold nanoparticles (AuNPs) as photothermal agents have been widely used in biofilm eradication, there are still challenges to be addressed, such as insignificantly redshifted absorption and slow assembly process of aggregated AuNPs. Herein, we developed an acidity-activated dispersion-to-aggregation transition to enhance the accumulation of self-complementary zwitterionic peptide-decorated AuNPs for photothermal eradication of drug-resistant biofilm infections.
View Article and Find Full Text PDFFast screening strategies that enable high-throughput evaluation and identification of desired variants from diversified enzyme libraries are crucial to tailoring biocatalysts for the synthesis of D-allulose, which is currently limited by the poor catalytic performance of ketose 3-epimerases (KEases). Here, the study designs a minimally equipment-dependent, high-throughput, and growth-coupled in vivo screening platform founded on a redesigned D-allulose-dependent biosensor system. The genetic elements modulating regulator PsiR expression levels undergo systematic optimization to improve the growth-responsive dynamic range of the biosensor, which presents ≈30-fold facilitated growth optical density with a high signal-to-noise ratio (1.
View Article and Find Full Text PDFCorrection for 'Wheat peptides inhibit the activation of MAPK and NF-κB inflammatory pathways and maintain epithelial barrier integrity in NSAID-induced intestinal epithelial injury' by Zhiyuan Feng , , 2024, https://doi.org/10.1039/D3FO03954D.
View Article and Find Full Text PDFFalse smut, caused by , is becoming increasingly serious in modern rice production systems, leading to yield losses and quality declines. Successful infection requires efficient acquisition of sucrose, abundant in rice panicles, as well as other sugars. Sugar transporters (STPs) may play an important role in this process.
View Article and Find Full Text PDFThe use of non-steroidal anti-inflammatory drugs (NSAIDs) has negative effects on the gastrointestinal tract, but the proton pump inhibitors currently in use only protect against gastrointestinal disease and may even make NSAID-induced enteropathy worse. Therefore, new approaches to treating enteropathy are required. This study aimed to investigate the protective effect of wheat peptides (WPs) against NSAID-induced intestinal damage in mice and their mechanism.
View Article and Find Full Text PDFBackground: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) potentially serve as ideal antimicrobial agents for the treatment of polymicrobial abdominal infections due to their broad-spectrum antimicrobial activity and excellent biocompatibility. However, the balance of chain length, positive charges, and hydrophobicity on the antimicrobial activity of AMPs are still far from being optimal. Herein, a series of AMPs ([KX]-NH, X = Ile, Leu or Phe, n = 3, 4, 5, or 6) with varied charges and hydrophobicity for the treatment of polymicrobial abdominal infections are designed.
View Article and Find Full Text PDFD-Allulose, a functional sweetener, can be synthesized from fructose using D-allulose 3-epimerase (DAEase). Nevertheless, a majority of the reported DAEases have inadequate stability under harsh industrial reaction conditions, which greatly limits their practical applications. In this study, big data mining combined with a computer-guided free energy calculation strategy was employed to discover a novel DAEase with excellent thermostability.
View Article and Find Full Text PDFd-Allose is a low-calorie rare sugar with great application potential in the food and pharmaceutical industries. The production of d-allose has been accomplished using l-rhamnose isomerase (L-RI), but concomitantly increasing the enzyme's stability and activity remains challenging. Here, we rationally engineered an L-RI from to enhance its stability by comprehensive computation-aided redesign of its flexible regions, which were successively identified using molecular dynamics simulations.
View Article and Find Full Text PDFBackground: Compound 2-O-α-d-glucosylglycerol (2αGG) naturally serves as a compatible osmolyte in acclimation to environmental stresses, such as high osmolarity, dryness, and extreme temperature. It presents several bioactivities and has been used in the food, agriculture, and cosmetics areas.
Results: In the present study, we attempted to synthesize the 2αGG from low-cost maltodextrin and glycerol by constructing an in vitro multi-enzyme system.
Chronic pain is a common public health problem and remains an unmet medical need. Currently available analgesics usually have limited efficacy for the treatment of chronic pain, including neuropathic pain and persistent inflammatory pain, or they are accompanied by many adverse side effects. The voltage-gated calcium channel blocker (pregabalin) and potassium channel openers (flupirtine and retigabine) have been widely used for the management of chronic pain, but their effectiveness in combination is unclear.
View Article and Find Full Text PDF