Publications by authors named "Huili Shao"

Solution blowing process was used to prepare cellulose nonwovens, by using N-methyl morpholine-N-oxide (NMMO) as solvent, and salicylic acid (SA) microcapsules as antibacterial additives. The structure and properties of cellulose nonwovens modified with different SA microcapsules contents were compared and evaluated. The results showed that more uniform and denser web structure was formed with the increase of SA microcapsules content, the average fiber diameter of cellulose nonwoven increased from 1.

View Article and Find Full Text PDF

To investigate the growth, mortality, and resource utilization of in Langcuo Lake of Tibetan Plateau, we measured body length and body weight of 389 fish based on four sampling surveys from October 2018 to November 2019. We identified the ages through lapillus. Based on frequency distribution of body length, we estimated the growth and mortality coefficients of .

View Article and Find Full Text PDF

Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology.

View Article and Find Full Text PDF

Silk fibroin (SF) is a promising biomaterial due to its good biocompatibility, easy availability, and high mechanical properties. Compared with mulberry silk fibroin (MSF), nonmulberry silk fibroin (NSF) isolated from typical nonmulberry silkworm silk exhibits unique arginine-glycine-aspartic acid (RGD) sequences with favorable cell adhesion enhancing effect. This inherent property probably makes the NSF more suitable for cell culture and tissue regeneration-related applications.

View Article and Find Full Text PDF

Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Raphani Semen (Lai Fu-zi in Chinese, RS), the dried seeds of Raphanus sativus L., is a traditional Chinese herbal medicine. RS has long been used for eliminating bloating and digestion, antitussive, expectorant and anti-asthmatic in clinical treatment of traditional Chinese medicine.

View Article and Find Full Text PDF

Toad venom contains a large number of bufadienolides, which have a variety of pharmacological activities, including antitumor, cardiovascular, anti-inflammatory, analgesic and immunomodulatory effects. The strong antitumor effect of bufadienolides has attracted considerable attention in recent years, but the clinical application of bufadienolides is limited due to their low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored, such as structural modification, solid dispersion, cyclodextrin inclusion, microemulsion and nanodrug delivery systems, etc.

View Article and Find Full Text PDF

Generally, electrospun silk fibroin scaffolds collected by traditional plates present limited pore size and mechanical properties, which may restrict their biomedical applications. Herein, regenerated Antheraea pernyi silk fibroin (RASF) with excellent inherent cell adhesion property was chosen as a raw material and the conductive metal meshes were used as collectors to prepare modified RASF scaffolds by electrospinning from its aqueous solution. A traditional intact plate was used as a control.

View Article and Find Full Text PDF

Angelica sinensis polysaccharide (ASP) is one of the main active components of Angelica sinensis (AS) that is widely used in traditional Chinese medicine. ASP is water-soluble polysaccharides, and it is mainly composed of glucose (Glc), galactose (Gal), arabinose (Ara), rhamnose (Rha), fucose (Fuc), xylose (Xyl) and galacturonic acid (GalUA). The extraction methods of ASP include hot water extraction and ultrasonic wave extraction, and different extraction methods can affect the yield of ASP.

View Article and Find Full Text PDF

Two kinds of dual-wavelength excitable fluorescent Lyocell fibers, which can be excited by short-wavelength UV/IR or long-wavelength UV/IR radiation, were prepared by dry-jet wet spinning. These fluorescent Lyocell fibers can emit two different fluorescence wavelengths at two different excitation wavelengths, exhibiting double anti-counterfeiting functions, thereby providing higher security. SEM-EDX analysis showed the uniform phosphors distribution in Lyocell fibers.

View Article and Find Full Text PDF

Antibacterial scaffolds are highly desirable for the repair and reconstruction of injured soft tissues. However, the direct fabrication of scaffolds with excellent biocompatibility, flexibility, and antibacterial capacity remains a challenge, especially those based on biomaterials. In this study, we report the biomaterial-based antibacterial scaffolds based on regenerated silk fibroin, 2-hydroxypropyltrimethyl ammonium chloride chitosan, and bladder acellular matrix graft by blend and coaxial electrospinning.

View Article and Find Full Text PDF

A new capillary electrophoresis method was applied to chiral separation of three amino acids, including D,L-tryptophan, D,L-tyrosine and D,L-phenylalanine. The chiral resolution was attained in an untreated fused-sillica capillary using a dual chiral selector, which was made up of Cu(II)-L-histidine complex and β-cyclodextrin (CD). The cardinal factors influencing its separation efficiency, such as chiral selectors, buffer pH and applied voltage, were optimized.

View Article and Find Full Text PDF

A Faraday cage-type aptasensor has been developed for dual-mode detection of a common bacterial pathogen Vibrio parahaemolyticus (VP) by electrochemiluminescence (ECL) and differential pulse voltammetry (DPV), using a multi-functionalized material Pb-Ru-MOF@Apt2 as signal unit. The recognition aptamer Apt2 recognizes VP; specifically, ruthenium-based metal organic framework (Ru-MOF) and lead ions (Pb) embedded produce an ECL signal at a working potential from 0 to 1.5 V and DPV signal from - 0.

View Article and Find Full Text PDF

Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds. Despite great progress in the preparation of a variety of colored silks, fluorescent silk with enhanced mechanical properties has yet to be explored. In this study, we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots (CNDs).

View Article and Find Full Text PDF

MicroRNAs are widely used as tumor markers for cancer diagnosis and prognosis. Herein, a multiple signal amplification sandwich-type SERS biosensor for femtomolar detection of miRNA is reported. The signal unit consisted of giant Au vesicles, DNA sequences and deposited silver nanoparticles.

View Article and Find Full Text PDF

One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds.

View Article and Find Full Text PDF

Rapid vascularization is very important in tissue engineering. Bladder acellular matrix (BAM) with inherent bioactive factors, a natural extracellular matrix (ECM) derived biomaterial, has been widely used as a scaffold to facilitate the repair and reconstruction of urinary tissues. However, the application of the traditional BAM scaffold has been limited due to the dense structure.

View Article and Find Full Text PDF

Fluorescent silk fibroin (SF) fibers have great potential in biomedical application and special functions for marking and tracking. How to fabricate fluorescent SF fibers with good fluorescence stability by a simple and environmentally friendly method has yet to be explored. Here, we successfully produced fluorescent SF fibers by using silkworms as bioreactors to introduce rare-earth upconverting phosphors (UCPs) into silk fibroin.

View Article and Find Full Text PDF

Electrospun scaffold with three-dimensional (3D) geometry and appropriate pore structure is an important challenge to mimic natural tissues such as skin, cartilage, etc. In this work, 3D silk fibroin (SF) electrospun scaffolds with gradient pore size were prepared by combining multi-step electrospinning with low temperature (LTE) collecting. The LTE electrospun scaffolds achieved 3D macro-structure with large pore size.

View Article and Find Full Text PDF

In this study, nascent silk nanoribbons (SNRs) with an average thickness of 0.4 nm were extracted from natural silkworm silk by partially dissolving degummed silk (DS) in sodium hydroxide (NaOH)/urea solution at -12 °C. In this gentle treatment, the solvent could not destroy the nanofibrillar structure completely, but the chosen conditions would influence the dimensions of resulting SNRs.

View Article and Find Full Text PDF

Various attractive materials are being used in bioelectronics recently. In this paper, hydroxymethyl-3,4-ethylenedioxythiophene (EDOT-OH) has been in situ integrated and polymerized on the surface of the regenerated silk fibroin (RSF) film to construct a biocompatible electrode. In order to improve the efficiency of in situ polymerization, sodium dodecyl sulfate (SDS) was adopted as surfactant to construct a well-organized and stable poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-OH) coating, whereas ammonium persulfate was used as oxidant.

View Article and Find Full Text PDF

Here, a novel Faraday cage-type electrochemiluminescence (ECL) biosensor was presented for simultaneous determination of miRNA-141 and miRNA-21 based on the potential-resolved strategy. In this work, capture units were prepared by immobilizing hairpin DNA1 (HP1) and hairpin DNA2 (HP2) on FeO @Au nanocomposites, while g-CN @AuNPs nanocomposites labelled by signal DNA1 (sDNA1) and ruthenium-based metal organic framework (Ru-MOF) nanosheets labelled by signal DNA2 (sDNA2) were used as signal units. In this proposed biosensor, signal units g-CN @AuNPs-sDNA1 and Ru-MOF-sDNA2 could exhibit two strong and stable ECL emissions at - 1.

View Article and Find Full Text PDF

A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (HO), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to HO reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of HO effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity.

View Article and Find Full Text PDF

Considering the high biocompatibility of regenerated silk fibroin (RSF) and the good enhancement effect of graphene oxide (GO), various RSF/GO composite materials have been previously investigated, and found that GO plays a vital role in the fabrication of high-performance RSF/GO materials. However, its effects on the structure of RSF solution are unclear. Therefore, in this work, we studied the rheological and optical properties, as well as the aggregation behavior of concentrated RSF/GO solution in response to applied shear.

View Article and Find Full Text PDF

The protocol demonstrates a method for mimicking the spinning process of silkworm. In the native spinning process, the contracting spinning duct enables the silk proteins to be compact and ordered by shearing and elongation forces. Here, a biomimetic microfluidic channel was designed to mimic the specific geometry of the spinning duct of the silkworm.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionan82lgj0ag7m73jkdopkofpbvn8m43kj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once